These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 30220223)

  • 1. Prediction of chlortetracycline adsorption on the Fe
    Dowlatabadi M; Jahangiri M; Farhadian N
    J Biomol Struct Dyn; 2019 Sep; 37(14):3616-3626. PubMed ID: 30220223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered biochar composites with zeolite, silica, and nano-zerovalent iron for the efficient scavenging of chlortetracycline from aqueous solutions.
    Ahmad M; Usman ARA; Rafique MI; Al-Wabel MI
    Environ Sci Pollut Res Int; 2019 May; 26(15):15136-15152. PubMed ID: 30924040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel biochar derived from cauliflower (Brassica oleracea L.) roots could remove norfloxacin and chlortetracycline efficiently.
    Qin T; Wang Z; Xie X; Xie C; Zhu J; Li Y
    Water Sci Technol; 2017 Dec; 76(11-12):3307-3318. PubMed ID: 29236010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption and diffusion of colloidal Au nanoparticles at a liquid-vapor interface.
    Poddar NN; Amar JG
    J Chem Phys; 2014 Jun; 140(24):244702. PubMed ID: 24985663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of antibiotics from aqueous solution by using magnetic Fe
    Aydin S; Aydin ME; Beduk F; Ulvi A
    Sci Total Environ; 2019 Jun; 670():539-546. PubMed ID: 30909031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From illite/smectite clay to mesoporous silicate adsorbent for efficient removal of chlortetracycline from water.
    Wang W; Tian G; Zong L; Zhou Y; Kang Y; Wang Q; Wang A
    J Environ Sci (China); 2017 Jan; 51():31-43. PubMed ID: 28115143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of tetracyclines onto polyethylene microplastics: A combined study of experiment and molecular dynamics simulation.
    Chen Y; Li J; Wang F; Yang H; Liu L
    Chemosphere; 2021 Feb; 265():129133. PubMed ID: 33276997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of methylene blue dye from aqueous solution using immobilized Agrobacterium fabrum biomass along with iron oxide nanoparticles as biosorbent.
    Sharma S; Hasan A; Kumar N; Pandey LM
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):21605-21615. PubMed ID: 29785597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption study of environmentally relevant concentrations of chlortetracycline on pinewood biochar.
    Taheran M; Naghdi M; Brar SK; Knystautas EJ; Verma M; Ramirez AA; Surampalli RY; Valero JR
    Sci Total Environ; 2016 Nov; 571():772-7. PubMed ID: 27422726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of superparamagnetic iron oxide nanoparticles on silica and calcium carbonate sand.
    Park YC; Paulsen J; Nap RJ; Whitaker RD; Mathiyazhagan V; Song YQ; Hürlimann M; Szleifer I; Wong JY
    Langmuir; 2014 Jan; 30(3):784-92. PubMed ID: 24393031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced chlortetracycline removal by iron oxide modified spent coffee grounds biochar and persulfate system.
    Wang Y; Tian Q; Yang G; Li X; Du W; Leong YK; Chang JS
    Chemosphere; 2022 Aug; 301():134654. PubMed ID: 35452644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational design of interfacial properties of ferric (hydr)oxide nanoparticles by adsorption of fatty acids from aqueous solutions.
    Ponnurangam S; Chernyshova IV; Somasundaran P
    Langmuir; 2012 Jul; 28(29):10661-71. PubMed ID: 22694303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superparamagnetic nanomaterial Fe3O4-TiO2 for the removal of As(V) and As(III) from aqueous solutions.
    Beduk F
    Environ Technol; 2016; 37(14):1790-801. PubMed ID: 26831455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of soil organic matter and cadmium (II) on adsorption and desorption of chlortetracycline in soil].
    Wan Y; Bao YY; Zhou QX
    Huan Jing Ke Xue; 2010 Dec; 31(12):3050-5. PubMed ID: 21360898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic chitosan-based adsorbent prepared via Pickering high internal phase emulsion for high-efficient removal of antibiotics.
    Lu T; Zhu Y; Qi Y; Wang W; Wang A
    Int J Biol Macromol; 2018 Jan; 106():870-877. PubMed ID: 28834703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of a novel magnetic microporous adsorbent and its adsorption behavior of p-nitrophenol and chlorotetracycline.
    Ma Y; Zhou Q; Li A; Shuang C; Shi Q; Zhang M
    J Hazard Mater; 2014 Feb; 266():84-93. PubMed ID: 24380891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel and biocompatible Fe
    Zhang H; Tan X; Qiu T; Zhou L; Li R; Deng Z
    Int J Biol Macromol; 2019 Dec; 141():1165-1174. PubMed ID: 31499115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MOF-derived cluster-shaped magnetic nanocomposite with hierarchical pores as an efficient and regenerative adsorbent for chlortetracycline removal.
    Fan S; Qu Y; Yao L; Ren J; Luque R; He Z; Bai C
    J Colloid Interface Sci; 2021 Mar; 586():433-444. PubMed ID: 33162041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study for adsorption of lysozyme from aqueous samples onto Fe3O4 magnetic nanoparticles using different ionic liquids as modifier.
    Kamran S; Absalan G; Asadi M
    Amino Acids; 2015 Dec; 47(12):2483-93. PubMed ID: 26149480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption mechanism of water molecules surrounding Au nanoparticles of different sizes.
    Chang CI; Lee WJ; Young TF; Ju SP; Chang CW; Chen HL; Chang JG
    J Chem Phys; 2008 Apr; 128(15):154703. PubMed ID: 18433254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.