These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
391 related articles for article (PubMed ID: 30220436)
1. An overview of the effect of pyrolysis process parameters on biochar stability. Leng L; Huang H Bioresour Technol; 2018 Dec; 270():627-642. PubMed ID: 30220436 [TBL] [Abstract][Full Text] [Related]
2. Biochar stability assessment by incubation and modelling: Methods, drawbacks and recommendations. Leng L; Xu X; Wei L; Fan L; Huang H; Li J; Lu Q; Li J; Zhou W Sci Total Environ; 2019 May; 664():11-23. PubMed ID: 30738273 [TBL] [Abstract][Full Text] [Related]
3. Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Zhang J; Liu J; Liu R Bioresour Technol; 2015 Jan; 176():288-91. PubMed ID: 25435066 [TBL] [Abstract][Full Text] [Related]
4. Characteristics of biochars from crop residues: potential for carbon sequestration and soil amendment. Windeatt JH; Ross AB; Williams PT; Forster PM; Nahil MA; Singh S J Environ Manage; 2014 Dec; 146():189-197. PubMed ID: 25173727 [TBL] [Abstract][Full Text] [Related]
5. Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Roberts KG; Gloy BA; Joseph S; Scott NR; Lehmann J Environ Sci Technol; 2010 Jan; 44(2):827-33. PubMed ID: 20030368 [TBL] [Abstract][Full Text] [Related]
6. Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved. Brassard P; Godbout S; Raghavan V J Environ Manage; 2016 Oct; 181():484-497. PubMed ID: 27420171 [TBL] [Abstract][Full Text] [Related]
7. Influence of pyrolysis temperature and feedstock on carbon fractions of biochar produced from pyrolysis of rice straw, pine wood, pig manure and sewage sludge. Wei S; Zhu M; Fan X; Song J; Peng P; Li K; Jia W; Song H Chemosphere; 2019 Mar; 218():624-631. PubMed ID: 30502701 [TBL] [Abstract][Full Text] [Related]
8. Slow pyrolysis polygeneration of bamboo (Phyllostachys pubescens): Product yield prediction and biochar formation mechanism. Wang H; Wang X; Cui Y; Xue Z; Ba Y Bioresour Technol; 2018 Sep; 263():444-449. PubMed ID: 29772506 [TBL] [Abstract][Full Text] [Related]
9. Date palm waste-derived biochar composites with silica and zeolite: synthesis, characterization and implication for carbon stability and recalcitrant potential. Ahmad M; Ahmad M; Usman ARA; Al-Faraj AS; Abduljabbar A; Ok YS; Al-Wabel MI Environ Geochem Health; 2019 Aug; 41(4):1687-1704. PubMed ID: 28337620 [TBL] [Abstract][Full Text] [Related]
10. Biofuels from pyrolysis in perspective: trade-offs between energy yields and soil-carbon additions. Woolf D; Lehmann J; Fisher EM; Angenent LT Environ Sci Technol; 2014 Jun; 48(11):6492-9. PubMed ID: 24787482 [TBL] [Abstract][Full Text] [Related]
11. Effect of calcium dihydrogen phosphate addition on carbon retention and stability of biochars derived from cellulose, hemicellulose, and lignin. Li F; Gui X; Ji W; Zhou C Chemosphere; 2020 Jul; 251():126335. PubMed ID: 32145573 [TBL] [Abstract][Full Text] [Related]
12. Phosphorus-assisted biomass thermal conversion: reducing carbon loss and improving biochar stability. Zhao L; Cao X; Zheng W; Kan Y PLoS One; 2014; 9(12):e115373. PubMed ID: 25531111 [TBL] [Abstract][Full Text] [Related]
13. Effect of pyrolysis temperature on the chemical oxidation stability of bamboo biochar. Chen D; Yu X; Song C; Pang X; Huang J; Li Y Bioresour Technol; 2016 Oct; 218():1303-6. PubMed ID: 27481469 [TBL] [Abstract][Full Text] [Related]
14. Biochar stability assessment methods: A review. Leng L; Huang H; Li H; Li J; Zhou W Sci Total Environ; 2019 Jan; 647():210-222. PubMed ID: 30077850 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Pariyar P; Kumari K; Jain MK; Jadhao PS Sci Total Environ; 2020 Apr; 713():136433. PubMed ID: 31954240 [TBL] [Abstract][Full Text] [Related]
16. Feedstock particle size and pyrolysis temperature regulate effects of biochar on soil nitrous oxide and carbon dioxide emissions. Deng B; Yuan X; Siemann E; Wang S; Fang H; Wang B; Gao Y; Shad N; Liu X; Zhang W; Guo X; Zhang L Waste Manag; 2021 Feb; 120():33-40. PubMed ID: 33279825 [TBL] [Abstract][Full Text] [Related]
17. A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass. Li Y; Xing B; Ding Y; Han X; Wang S Bioresour Technol; 2020 Sep; 312():123614. PubMed ID: 32517889 [TBL] [Abstract][Full Text] [Related]
18. Co-pyrolysis of wood chips and bentonite/kaolin: Influence of temperatures and minerals on characteristics and carbon sequestration potential of biochar. Wang F; Zhang R; Donne SW; Beyad Y; Liu X; Duan X; Yang T; Su P; Sun H Sci Total Environ; 2022 Sep; 838(Pt 2):156081. PubMed ID: 35598667 [TBL] [Abstract][Full Text] [Related]
19. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C. Lee Y; Park J; Ryu C; Gang KS; Yang W; Park YK; Jung J; Hyun S Bioresour Technol; 2013 Nov; 148():196-201. PubMed ID: 24047681 [TBL] [Abstract][Full Text] [Related]
20. Trace metal elements mediated co-pyrolysis of biomass and bentonite for the synthesis of biochar with high stability. Yu J; Wu Z; An X; Tian F; Yu B Sci Total Environ; 2021 Jun; 774():145611. PubMed ID: 33607429 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]