These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 30220436)

  • 21. Biochar physicochemical parameters as a result of feedstock material and pyrolysis temperature: predictable for the fate of biochar in soil?
    Břendová K; Száková J; Lhotka M; Krulikovská T; Punčochář M; Tlustoš P
    Environ Geochem Health; 2017 Dec; 39(6):1381-1395. PubMed ID: 28664248
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures.
    Zhao L; Cao X; Mašek O; Zimmerman A
    J Hazard Mater; 2013 Jul; 256-257():1-9. PubMed ID: 23669784
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomass pyrolysis for biochar or energy applications? A life cycle assessment.
    Peters JF; Iribarren D; Dufour J
    Environ Sci Technol; 2015 Apr; 49(8):5195-202. PubMed ID: 25830564
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pyrolysis temperature-dependent carbon retention and stability of biochar with participation of calcium: Implications to carbon sequestration.
    Nan H; Yin J; Yang F; Luo Y; Zhao L; Cao X
    Environ Pollut; 2021 Oct; 287():117566. PubMed ID: 34153610
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of minerals on the stability of biochar.
    Yang Y; Sun K; Han L; Jin J; Sun H; Yang Y; Xing B
    Chemosphere; 2018 Aug; 204():310-317. PubMed ID: 29665534
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biochar efficiency in pesticides sorption as a function of production variables--a review.
    Yavari S; Malakahmad A; Sapari NB
    Environ Sci Pollut Res Int; 2015 Sep; 22(18):13824-41. PubMed ID: 26250816
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Greenhouse gas emissions and soil properties following amendment with manure-derived biochars: Influence of pyrolysis temperature and feedstock type.
    Subedi R; Taupe N; Pelissetti S; Petruzzelli L; Bertora C; Leahy JJ; Grignani C
    J Environ Manage; 2016 Jan; 166():73-83. PubMed ID: 26484602
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of pyrolysis temperature on chemical and surface properties of biochar of rapeseed (Brassica napus L.).
    Angin D; Sensöz S
    Int J Phytoremediation; 2014; 16(7-12):684-93. PubMed ID: 24933878
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction model for biochar energy potential based on biomass properties and pyrolysis conditions derived from rough set machine learning.
    Tang JY; Chung BYH; Ang JC; Chong JW; Tan RR; Aviso KB; Chemmangattuvalappil NG; Thangalazhy-Gopakumar S
    Environ Technol; 2024 Jun; 45(15):2908-2922. PubMed ID: 36927324
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Understanding the dependence of biochar properties on different types of biomass.
    Gholizadeh M; Meca S; Zhang S; Clarens F; Hu X
    Waste Manag; 2024 Jun; 182():142-163. PubMed ID: 38653043
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative analysis of biochar carbon stability methods and implications for carbon credits.
    Adhikari S; Moon E; Paz-Ferreiro J; Timms W
    Sci Total Environ; 2024 Mar; 914():169607. PubMed ID: 38154640
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of production conditions on yield and physicochemical properties of biochars produced from rice husk and oil palm empty fruit bunches.
    Yavari S; Malakahmad A; Sapari NB
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):17928-40. PubMed ID: 27255313
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Co-pyrolysis of lignocellulosic and macroalgae biomasses for the production of biochar - A review.
    Fakayode OA; Aboagarib EAA; Zhou C; Ma H
    Bioresour Technol; 2020 Feb; 297():122408. PubMed ID: 31767426
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biochar potentially mitigates greenhouse gas emissions from cultivation of oilseed rape for biodiesel.
    Thers H; Djomo SN; Elsgaard L; Knudsen MT
    Sci Total Environ; 2019 Jun; 671():180-188. PubMed ID: 30928748
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Stability of biochar and the mechanisms underlying its response to mineral modification: A review.].
    Gao CX; Liu YX; Wang YY; Lyu HH; He LL; Yang XY; Yang SM
    Ying Yong Sheng Tai Xue Bao; 2019 Sep; 30(9):3245-3251. PubMed ID: 31529900
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of mineral additives on biochar formation: carbon retention, stability, and properties.
    Li F; Cao X; Zhao L; Wang J; Ding Z
    Environ Sci Technol; 2014 Oct; 48(19):11211-7. PubMed ID: 25203840
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Albedo impact on the suitability of biochar systems to mitigate global warming.
    Meyer S; Bright RM; Fischer D; Schulz H; Glaser B
    Environ Sci Technol; 2012 Nov; 46(22):12726-34. PubMed ID: 23146092
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis.
    Huff MD; Kumar S; Lee JW
    J Environ Manage; 2014 Dec; 146():303-308. PubMed ID: 25190598
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effects of feedstock pre-treatment and pyrolysis temperature on the production of biochar from the green seaweed Ulva.
    Roberts DA; de Nys R
    J Environ Manage; 2016 Mar; 169():253-60. PubMed ID: 26773429
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of biochars obtained from valorization of biowaste and evaluation of its physicochemical properties.
    Narzari R; Bordoloi N; Sarma B; Gogoi L; Gogoi N; Borkotoki B; Kataki R
    Bioresour Technol; 2017 Oct; 242():324-328. PubMed ID: 28501382
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.