These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 30220436)

  • 41. Prospective Life Cycle Assessment of Large-Scale Biochar Production and Use for Negative Emissions in Stockholm.
    Azzi ES; Karltun E; Sundberg C
    Environ Sci Technol; 2019 Jul; 53(14):8466-8476. PubMed ID: 31268319
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar).
    Zimmerman AR
    Environ Sci Technol; 2010 Feb; 44(4):1295-301. PubMed ID: 20085259
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars).
    Harvey OR; Kuo LJ; Zimmerman AR; Louchouarn P; Amonette JE; Herbert BE
    Environ Sci Technol; 2012 Feb; 46(3):1415-21. PubMed ID: 22242866
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biophysical potential of crop residues for biochar carbon sequestration, and co-benefits, in Uganda.
    Roobroeck D; Hood-Nowotny R; Nakubulwa D; Tumuhairwe JB; Mwanjalolo MJG; Ndawula I; Vanlauwe B
    Ecol Appl; 2019 Dec; 29(8):e01984. PubMed ID: 31351025
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transport of biochar particles in saturated granular media: effects of pyrolysis temperature and particle size.
    Wang D; Zhang W; Hao X; Zhou D
    Environ Sci Technol; 2013 Jan; 47(2):821-8. PubMed ID: 23249307
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars.
    Santín C; Doerr SH; Merino A; Bucheli TD; Bryant R; Ascough P; Gao X; Masiello CA
    Sci Rep; 2017 Sep; 7(1):11233. PubMed ID: 28894167
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Potential phosphorus eutrophication mitigation strategy: Biochar carbon composition, thermal stability and pH influence phosphorus sorption.
    Ngatia LW; Hsieh YP; Nemours D; Fu R; Taylor RW
    Chemosphere; 2017 Aug; 180():201-211. PubMed ID: 28407550
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake.
    Angın D
    Bioresour Technol; 2013 Jan; 128():593-7. PubMed ID: 23211485
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida).
    Kim KH; Kim JY; Cho TS; Choi JW
    Bioresour Technol; 2012 Aug; 118():158-62. PubMed ID: 22705519
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Soil carbon sequestration and biochar as negative emission technologies.
    Smith P
    Glob Chang Biol; 2016 Mar; 22(3):1315-24. PubMed ID: 26732128
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biochar as a sorbent for contaminant management in soil and water: a review.
    Ahmad M; Rajapaksha AU; Lim JE; Zhang M; Bolan N; Mohan D; Vithanage M; Lee SS; Ok YS
    Chemosphere; 2014 Mar; 99():19-33. PubMed ID: 24289982
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Machine learning prediction of biochar yield and carbon contents in biochar based on biomass characteristics and pyrolysis conditions.
    Zhu X; Li Y; Wang X
    Bioresour Technol; 2019 Sep; 288():121527. PubMed ID: 31136889
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality.
    Jassal RS; Johnson MS; Molodovskaya M; Black TA; Jollymore A; Sveinson K
    J Environ Manage; 2015 Apr; 152():140-4. PubMed ID: 25621388
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Slow pyrolysis of agro-food wastes and physicochemical characterization of biofuel products.
    Patra BR; Nanda S; Dalai AK; Meda V
    Chemosphere; 2021 Dec; 285():131431. PubMed ID: 34329143
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biochar production via pyrolysis of citrus peel fruit waste as a potential usage as solid biofuel.
    Selvarajoo A; Wong YL; Khoo KS; Chen WH; Show PL
    Chemosphere; 2022 May; 294():133671. PubMed ID: 35092753
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thermochemical behavior of tris(2-butoxyethyl) phosphate (TBEP) during co-pyrolysis with biomass.
    Qian TT; Li DC; Jiang H
    Environ Sci Technol; 2014 Sep; 48(18):10734-42. PubMed ID: 25154038
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The impacts of biomass properties on pyrolysis yields, economic and environmental performance of the pyrolysis-bioenergy-biochar platform to carbon negative energy.
    Li W; Dang Q; Brown RC; Laird D; Wright MM
    Bioresour Technol; 2017 Oct; 241():959-968. PubMed ID: 28637163
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An overview on engineering the surface area and porosity of biochar.
    Leng L; Xiong Q; Yang L; Li H; Zhou Y; Zhang W; Jiang S; Li H; Huang H
    Sci Total Environ; 2021 Apr; 763():144204. PubMed ID: 33385838
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Properties of biomass-derived biochars: Combined effects of operating conditions and biomass types.
    Luo L; Xu C; Chen Z; Zhang S
    Bioresour Technol; 2015 Sep; 192():83-9. PubMed ID: 26022969
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of biochars produced from solid organic municipal waste on soil quality parameters.
    Randolph P; Bansode RR; Hassan OA; Rehrah D; Ravella R; Reddy MR; Watts DW; Novak JM; Ahmedna M
    J Environ Manage; 2017 May; 192():271-280. PubMed ID: 28183027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.