BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 30220772)

  • 21. Modeling the binding and diffusion of receptor-targeted nanoparticles topically applied on fresh tissue specimens.
    Kang S; Xu X; Navarro E; Wang Y; Liu JTC; Tichauer KM
    Phys Med Biol; 2019 Feb; 64(4):045013. PubMed ID: 30654346
    [TBL] [Abstract][Full Text] [Related]  

  • 22. uPAR-targeted optical near-infrared (NIR) fluorescence imaging and PET for image-guided surgery in head and neck cancer: proof-of-concept in orthotopic xenograft model.
    Christensen A; Juhl K; Persson M; Charabi BW; Mortensen J; Kiss K; Lelkaitis G; Rubek N; von Buchwald C; Kjær A
    Oncotarget; 2017 Feb; 8(9):15407-15419. PubMed ID: 28039488
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tomography of epidermal growth factor receptor binding to fluorescent Affibody in vivo studied with magnetic resonance guided fluorescence recovery in varying orthotopic glioma sizes.
    Holt RW; Demers JL; Sexton KJ; Gunn JR; Davis SC; Samkoe KS; Pogue BW
    J Biomed Opt; 2015 Feb; 20(2):26001. PubMed ID: 25652703
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A paired-agent fluorescent molecular imaging strategy for quantifying antibody drug target engagement in
    Kayaalp Nalbant E; Rounds C; Sadeghipour N; Meng B; Folaron MR; Haldar C; Strawbridge RR; Samkoe KS; Davis SC; Tichauer KM
    Proc SPIE Int Soc Opt Eng; 2020 Feb; 11219():. PubMed ID: 34183872
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Zwitterionic near-infrared fluorophore-conjugated epidermal growth factor for fast, real-time, and target-cell-specific cancer imaging.
    Kim H; Cho MH; Choi HS; Lee BI; Choi Y
    Theranostics; 2019; 9(4):1085-1095. PubMed ID: 30867817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detection of the molecular changes associated with oral cancer using a molecular-specific fluorescent contrast agent and single-wavelength spectroscopy.
    Hsu ER; Gillenwater AM; Richards-Kortum RR
    Appl Spectrosc; 2005 Sep; 59(9):1166-73. PubMed ID: 16197641
    [TBL] [Abstract][Full Text] [Related]  

  • 27. First-in-human PET quantification study of cerebral α4β2* nicotinic acetylcholine receptors using the novel specific radioligand (-)-[(18)F]Flubatine.
    Sabri O; Becker GA; Meyer PM; Hesse S; Wilke S; Graef S; Patt M; Luthardt J; Wagenknecht G; Hoepping A; Smits R; Franke A; Sattler B; Habermann B; Neuhaus P; Fischer S; Tiepolt S; Deuther-Conrad W; Barthel H; Schönknecht P; Brust P
    Neuroimage; 2015 Sep; 118():199-208. PubMed ID: 26037057
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantification of fluorophore concentration in tissue-simulating media by fluorescence measurements with a single optical fiber.
    Diamond KR; Patterson MS; Farrell TJ
    Appl Opt; 2003 May; 42(13):2436-42. PubMed ID: 12737480
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum.
    Liu Q; Zhu C; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):223-36. PubMed ID: 12683848
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Noninvasive depth estimation using tissue optical properties and a dual-wavelength fluorescent molecular probe
    Miller JP; Maji D; Lam J; Tromberg BJ; Achilefu S
    Biomed Opt Express; 2017 Jun; 8(6):3095-3109. PubMed ID: 28663929
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Paired-Agent Fluorescence Molecular Imaging of Sentinel Lymph Nodes Using Indocyanine Green as a Control Agent for Antibody-Based Targeted Agents.
    Li C; Xu X; McMahon N; Alhaj Ibrahim O; Sattar HA; Tichauer KM
    Contrast Media Mol Imaging; 2019; 2019():7561862. PubMed ID: 30718985
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Paired stereoisomer model for quantifying receptor concentration in vivo.
    Selikson A
    Med Phys; 2010 Apr; 37(4):1796-806. PubMed ID: 20443502
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts.
    Ke S; Wen X; Gurfinkel M; Charnsangavej C; Wallace S; Sevick-Muraca EM; Li C
    Cancer Res; 2003 Nov; 63(22):7870-5. PubMed ID: 14633715
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Partial-volume correction in dynamic PET-CT: effect on tumor kinetic parameter estimation and validation of simplified metrics.
    Cysouw MCF; Golla SVS; Frings V; Smit EF; Hoekstra OS; Kramer GM; Boellaard R;
    EJNMMI Res; 2019 Feb; 9(1):12. PubMed ID: 30715647
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct parametric reconstruction in dynamic PET myocardial perfusion imaging: in vivo studies.
    Petibon Y; Rakvongthai Y; El Fakhri G; Ouyang J
    Phys Med Biol; 2017 May; 62(9):3539-3565. PubMed ID: 28379843
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gold nanorods decorated with a cancer drug for multimodal imaging and therapy.
    Nair RV; Santhakumar H; Jayasree RS
    Faraday Discuss; 2018 Apr; 207():423-435. PubMed ID: 29355869
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation of injection dose and camera integration time on quantifying pharmacokinetics of a Cy5.5-GX1 probe with dynamic fluorescence imaging in vivo.
    Dai Y; Chen X; Yin J; Kang X; Wang G; Zhang X; Nie Y; Wu K; Liang J
    J Biomed Opt; 2016 Aug; 21(8):86001. PubMed ID: 27488591
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel approach to tracer-kinetic modeling for (macromolecular) dynamic contrast-enhanced MRI.
    Jacobs I; Strijkers GJ; Keizer HM; Janssen HM; Nicolay K; Schabel MC
    Magn Reson Med; 2016 Mar; 75(3):1142-53. PubMed ID: 25846802
    [TBL] [Abstract][Full Text] [Related]  

  • 39. qF-SSOP: real-time optical property corrected fluorescence imaging.
    Valdes PA; Angelo JP; Choi HS; Gioux S
    Biomed Opt Express; 2017 Aug; 8(8):3597-3605. PubMed ID: 28856038
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.