These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 30220955)

  • 1. Enhanced Electrochemical Stability of Molten Li Salt Hydrate Electrolytes by the Addition of Divalent Cations.
    Kondou S; Nozaki E; Terada S; Thomas ML; Ueno K; Umebayashi Y; Dokko K; Watanabe M
    J Phys Chem C Nanomater Interfaces; 2018 Sep; 122(35):20167-20175. PubMed ID: 30220955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the Electrolyte Solvation Structure via a Nonaqueous Co-Solvent to Enable High-Voltage Aqueous Lithium-Ion Batteries.
    Liu D; Yuan L; Li X; Chen J; Xiong R; Meng J; Zhu S; Huang Y
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17585-17593. PubMed ID: 35385244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure.
    Borodin O; Ren X; Vatamanu J; von Wald Cresce A; Knap J; Xu K
    Acc Chem Res; 2017 Dec; 50(12):2886-2894. PubMed ID: 29164857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting the Solid Polymer Electrolyte-Electrode Interface in the Vicinity of Electrochemical Stability Limits.
    Sångeland C; Hernández G; Brandell D; Younesi R; Hahlin M; Mindemark J
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):28716-28728. PubMed ID: 35708265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of a Solid Electrolyte Interphase in Hydrate-Melt Electrolytes.
    Ko S; Yamada Y; Yamada A
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45554-45560. PubMed ID: 31710206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-Principles Study on the Cation-Dependent Electrochemical Stabilities in Li/Na/K Hydrate-Melt Electrolytes.
    Miyazaki K; Takenaka N; Watanabe E; Yamada Y; Tateyama Y; Yamada A
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):42734-42738. PubMed ID: 32865388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A High Rate and Stable Hybrid Li/Na-Ion Battery Based on a Hydrated Molten Inorganic Salt Electrolyte.
    Wang Z; Xu Y; Peng J; Ou M; Wei P; Fang C; Li Q; Huang J; Han J; Huang Y
    Small; 2021 Oct; 17(40):e2101650. PubMed ID: 34453487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ramifications of Water-in-Salt Interfacial Structure at Charged Electrodes for Electrolyte Electrochemical Stability.
    Vatamanu J; Borodin O
    J Phys Chem Lett; 2017 Sep; 8(18):4362-4367. PubMed ID: 28846430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical analysis of electrode-dependent interfacial structures on hydrate-melt electrolytes.
    Takenaka N; Inagaki T; Shimada T; Yamada Y; Nagaoka M; Yamada A
    J Chem Phys; 2020 Mar; 152(12):124706. PubMed ID: 32241124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trend of Developing Aqueous Liquid and Gel Electrolytes for Sustainable, Safe, and High-Performance Li-Ion Batteries.
    Ji D; Kim J
    Nanomicro Lett; 2023 Nov; 16(1):2. PubMed ID: 37930432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable non-corrosive sulfonimide salt for 4-V-class lithium metal batteries.
    Qiao L; Oteo U; Martinez-Ibañez M; Santiago A; Cid R; Sanchez-Diez E; Lobato E; Meabe L; Armand M; Zhang H
    Nat Mater; 2022 Apr; 21(4):455-462. PubMed ID: 35165438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unveiling LiTFSI Precipitation as a Key Factor in Solid Electrolyte Interphase Formation in Li-Based Water-in-Salt Electrolytes.
    Jommongkol R; Deebansok S; Deng J; Zhu Y; Bouchal R; Fontaine O
    Small; 2024 Jan; 20(4):e2303945. PubMed ID: 37705137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilizing Li
    Zheng B; Zhu J; Wang H; Feng M; Umeshbabu E; Li Y; Wu QH; Yang Y
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25473-25482. PubMed ID: 29989392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water-in-Bisalt Electrolyte with Record Salt Concentration and Widened Electrochemical Stability Window.
    Forero-Saboya J; Hosseini-Bab-Anari E; Abdelhamid ME; Moth-Poulsen K; Johansson P
    J Phys Chem Lett; 2019 Sep; 10(17):4942-4946. PubMed ID: 31403300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Inorganic Surface Layer on Solid Electrolyte Interphase Evolution at Li-Metal Anodes.
    Kamphaus EP; Angarita-Gomez S; Qin X; Shao M; Engelhard M; Mueller KT; Murugesan V; Balbuena PB
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31467-31476. PubMed ID: 31368685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Hydrotropic Effect of Ionic Liquids in Water-in-Salt Electrolytes*.
    Becker M; Rentsch D; Reber D; Aribia A; Battaglia C; Kühnel RS
    Angew Chem Int Ed Engl; 2021 Jun; 60(25):14100-14108. PubMed ID: 33786945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Formation of "Dimethyl Sulfoxide/Water-in-Salt"-Based Chitosan Hydrogel Electrolyte for Advanced All-Solid-State Supercapacitors.
    Wang H; Deng Y; Qiu J; Wu J; Zhang K; Shao J; Yan L
    ChemSusChem; 2021 Jan; 14(2):632-641. PubMed ID: 33047843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanosized and metastable molybdenum oxides as negative electrode materials for durable high-energy aqueous Li-ion batteries.
    Yun J; Sagehashi R; Sato Y; Masuda T; Hoshino S; Rajendra HB; Okuno K; Hosoe A; Bandarenka AS; Yabuuchi N
    Proc Natl Acad Sci U S A; 2021 Nov; 118(48):. PubMed ID: 34815337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.