BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 30221355)

  • 1. Non-destructive classification of apple bruising time based on visible and near-infrared hyperspectral imaging.
    Pan X; Sun L; Li Y; Che W; Ji Y; Li J; Li J; Xie X; Xu Y
    J Sci Food Agric; 2019 Mar; 99(4):1709-1718. PubMed ID: 30221355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of early bruises on apples using hyperspectral reflectance imaging coupled with optimal wavelengths selection and improved watershed segmentation algorithm.
    Tian X; Liu X; He X; Zhang C; Li J; Huang W
    J Sci Food Agric; 2023 Oct; 103(13):6689-6705. PubMed ID: 37267465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nondestructive Detection and Quantification of Blueberry Bruising using Near-infrared (NIR) Hyperspectral Reflectance Imaging.
    Jiang Y; Li C; Takeda F
    Sci Rep; 2016 Oct; 6():35679. PubMed ID: 27767050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing visible and near infrared 'point' spectroscopy and hyperspectral imaging techniques to visualize the variability of apple firmness.
    Wang Z; Ding F; Ge Y; Wang M; Zuo C; Song J; Tu K; Lan W; Pan L
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Aug; 316():124344. PubMed ID: 38688212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sampling approach for predicting the eating quality of apples using visible-near infrared spectroscopy.
    Martínez Vega MV; Sharifzadeh S; Wulfsohn D; Skov T; Clemmensen LH; Toldam-Andersen TB
    J Sci Food Agric; 2013 Dec; 93(15):3710-9. PubMed ID: 23633436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Detection of slight bruises on apples based on hyperspectral imaging and MNF transform].
    Zhang BH; Huang WQ; Li JB; Zhao CJ; Liu CL; Huang DF; Gong L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 May; 34(5):1367-72. PubMed ID: 25095440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Hyperspectral Imaging Approach for Classifying Geographical Origins of Rhizoma Atractylodis Macrocephalae Using the Fusion of Spectrum-Image in VNIR and SWIR Ranges (VNIR-SWIR-FuSI).
    Ru C; Li Z; Tang R
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31052476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Apple Varieties Using a Multichannel Hyperspectral Imaging System.
    Huang Y; Yang Y; Sun Y; Zhou H; Chen K
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32911790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Feature extraction of hyperspectral scattering image for apple mealiness based on singular value decomposition].
    Huang M; Zhu QB
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Mar; 31(3):767-70. PubMed ID: 21595236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The application of FT-NIRS for the detection of bruises and the prediction of rot susceptibility of 'Hass' avocado fruit.
    Wedding BB; Wright C; Grauf S; Gadek P; White RD
    J Sci Food Agric; 2019 Mar; 99(4):1880-1887. PubMed ID: 30264542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification Learning of Latent Bruise Damage to Apples Using Shortwave Infrared Hyperspectral Imaging.
    Nturambirwe JFI; Perold WJ; Opara UL
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Discrimination of brownheart and watercore of apples based on energy spectrum of visible/near infrared transmittance].
    Wang JH; Sun XD; Pan L; Sun Q; Han DH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Sep; 28(9):2098-102. PubMed ID: 19093569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of spectral resolutions for multispectral detection of apple bruises using visible/near-infrared hyperspectral reflectance imaging.
    Baek I; Mo C; Eggleton C; Gadsden SA; Cho BK; Qin J; Chan DE; Kim MS
    Front Plant Sci; 2022; 13():963591. PubMed ID: 36105710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on Qualitative Impact Damage of Loquats Using Hyperspectral Technology Coupled with Texture Features.
    Li B; Han Z; Wang Q; Sun Z; Liu Y
    Foods; 2022 Aug; 11(16):. PubMed ID: 36010443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperspectral Imaging and Spectrometry-Derived Spectral Features for Bitter Pit Detection in Storage Apples.
    Jarolmasjed S; Khot LR; Sankaran S
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29762463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate and nondestructive detection of apple brix and acidity based on visible and near-infrared spectroscopy.
    Zhang Y; Chen Y; Wu Y; Cui C
    Appl Opt; 2021 May; 60(13):4021-4028. PubMed ID: 33983342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new application of NIR spectroscopy to describe and predict purees quality from the non-destructive apple measurements.
    Lan W; Jaillais B; Leca A; Renard CMGC; Bureau S
    Food Chem; 2020 Apr; 310():125944. PubMed ID: 31835215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geographical origin of Chinese apples based on multiple element analysis.
    Zhang J; Nie J; Kuang L; Shen Y; Zheng H; Zhang H; Farooq S; Asim S
    J Sci Food Agric; 2019 Nov; 99(14):6182-6190. PubMed ID: 31250438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fruit variability impacts puree quality: Assessment on individually processed apples using the visible and near infrared spectroscopy.
    Lan W; Jaillais B; Chen S; Renard CMGC; Leca A; Bureau S
    Food Chem; 2022 Oct; 390():133088. PubMed ID: 35537239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multielement authentication of apples from the cold highlands in southwest China.
    Zhang J; Nie J; Zhang L; Xu G; Zheng H; Shen Y; Kuang L; Gao X; Zhang H
    J Sci Food Agric; 2022 Jan; 102(1):241-249. PubMed ID: 34081336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.