These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 30221355)
1. Non-destructive classification of apple bruising time based on visible and near-infrared hyperspectral imaging. Pan X; Sun L; Li Y; Che W; Ji Y; Li J; Li J; Xie X; Xu Y J Sci Food Agric; 2019 Mar; 99(4):1709-1718. PubMed ID: 30221355 [TBL] [Abstract][Full Text] [Related]
2. Detection of early bruises on apples using hyperspectral reflectance imaging coupled with optimal wavelengths selection and improved watershed segmentation algorithm. Tian X; Liu X; He X; Zhang C; Li J; Huang W J Sci Food Agric; 2023 Oct; 103(13):6689-6705. PubMed ID: 37267465 [TBL] [Abstract][Full Text] [Related]
3. Nondestructive Detection and Quantification of Blueberry Bruising using Near-infrared (NIR) Hyperspectral Reflectance Imaging. Jiang Y; Li C; Takeda F Sci Rep; 2016 Oct; 6():35679. PubMed ID: 27767050 [TBL] [Abstract][Full Text] [Related]
4. Comparing visible and near infrared 'point' spectroscopy and hyperspectral imaging techniques to visualize the variability of apple firmness. Wang Z; Ding F; Ge Y; Wang M; Zuo C; Song J; Tu K; Lan W; Pan L Spectrochim Acta A Mol Biomol Spectrosc; 2024 Aug; 316():124344. PubMed ID: 38688212 [TBL] [Abstract][Full Text] [Related]
5. A sampling approach for predicting the eating quality of apples using visible-near infrared spectroscopy. Martínez Vega MV; Sharifzadeh S; Wulfsohn D; Skov T; Clemmensen LH; Toldam-Andersen TB J Sci Food Agric; 2013 Dec; 93(15):3710-9. PubMed ID: 23633436 [TBL] [Abstract][Full Text] [Related]
6. [Detection of slight bruises on apples based on hyperspectral imaging and MNF transform]. Zhang BH; Huang WQ; Li JB; Zhao CJ; Liu CL; Huang DF; Gong L Guang Pu Xue Yu Guang Pu Fen Xi; 2014 May; 34(5):1367-72. PubMed ID: 25095440 [TBL] [Abstract][Full Text] [Related]
7. A Hyperspectral Imaging Approach for Classifying Geographical Origins of Rhizoma Atractylodis Macrocephalae Using the Fusion of Spectrum-Image in VNIR and SWIR Ranges (VNIR-SWIR-FuSI). Ru C; Li Z; Tang R Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31052476 [TBL] [Abstract][Full Text] [Related]
8. Identification of Apple Varieties Using a Multichannel Hyperspectral Imaging System. Huang Y; Yang Y; Sun Y; Zhou H; Chen K Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32911790 [TBL] [Abstract][Full Text] [Related]
9. [Feature extraction of hyperspectral scattering image for apple mealiness based on singular value decomposition]. Huang M; Zhu QB Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Mar; 31(3):767-70. PubMed ID: 21595236 [TBL] [Abstract][Full Text] [Related]
10. The application of FT-NIRS for the detection of bruises and the prediction of rot susceptibility of 'Hass' avocado fruit. Wedding BB; Wright C; Grauf S; Gadek P; White RD J Sci Food Agric; 2019 Mar; 99(4):1880-1887. PubMed ID: 30264542 [TBL] [Abstract][Full Text] [Related]
11. Classification Learning of Latent Bruise Damage to Apples Using Shortwave Infrared Hyperspectral Imaging. Nturambirwe JFI; Perold WJ; Opara UL Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372227 [TBL] [Abstract][Full Text] [Related]
12. [Discrimination of brownheart and watercore of apples based on energy spectrum of visible/near infrared transmittance]. Wang JH; Sun XD; Pan L; Sun Q; Han DH Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Sep; 28(9):2098-102. PubMed ID: 19093569 [TBL] [Abstract][Full Text] [Related]
13. Determination of spectral resolutions for multispectral detection of apple bruises using visible/near-infrared hyperspectral reflectance imaging. Baek I; Mo C; Eggleton C; Gadsden SA; Cho BK; Qin J; Chan DE; Kim MS Front Plant Sci; 2022; 13():963591. PubMed ID: 36105710 [TBL] [Abstract][Full Text] [Related]
14. Study on Qualitative Impact Damage of Loquats Using Hyperspectral Technology Coupled with Texture Features. Li B; Han Z; Wang Q; Sun Z; Liu Y Foods; 2022 Aug; 11(16):. PubMed ID: 36010443 [TBL] [Abstract][Full Text] [Related]
15. Hyperspectral Imaging and Spectrometry-Derived Spectral Features for Bitter Pit Detection in Storage Apples. Jarolmasjed S; Khot LR; Sankaran S Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29762463 [TBL] [Abstract][Full Text] [Related]
16. Accurate and nondestructive detection of apple brix and acidity based on visible and near-infrared spectroscopy. Zhang Y; Chen Y; Wu Y; Cui C Appl Opt; 2021 May; 60(13):4021-4028. PubMed ID: 33983342 [TBL] [Abstract][Full Text] [Related]
17. A new application of NIR spectroscopy to describe and predict purees quality from the non-destructive apple measurements. Lan W; Jaillais B; Leca A; Renard CMGC; Bureau S Food Chem; 2020 Apr; 310():125944. PubMed ID: 31835215 [TBL] [Abstract][Full Text] [Related]
18. Geographical origin of Chinese apples based on multiple element analysis. Zhang J; Nie J; Kuang L; Shen Y; Zheng H; Zhang H; Farooq S; Asim S J Sci Food Agric; 2019 Nov; 99(14):6182-6190. PubMed ID: 31250438 [TBL] [Abstract][Full Text] [Related]
19. Fruit variability impacts puree quality: Assessment on individually processed apples using the visible and near infrared spectroscopy. Lan W; Jaillais B; Chen S; Renard CMGC; Leca A; Bureau S Food Chem; 2022 Oct; 390():133088. PubMed ID: 35537239 [TBL] [Abstract][Full Text] [Related]
20. Multielement authentication of apples from the cold highlands in southwest China. Zhang J; Nie J; Zhang L; Xu G; Zheng H; Shen Y; Kuang L; Gao X; Zhang H J Sci Food Agric; 2022 Jan; 102(1):241-249. PubMed ID: 34081336 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]