These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 3022149)

  • 1. Calbindin immunoreactivity alternates with cytochrome c-oxidase-rich zones in some layers of the primate visual cortex.
    Celio MR; Schärer L; Morrison JH; Norman AW; Bloom FE
    Nature; 1986 Oct 23-29; 323(6090):715-7. PubMed ID: 3022149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemoarchitectonic subdivisions of the visual pulvinar in monkeys and their connectional relations with the middle temporal and rostral dorsolateral visual areas, MT and DLr.
    Cusick CG; Scripter JL; Darensbourg JG; Weber JT
    J Comp Neurol; 1993 Oct; 336(1):1-30. PubMed ID: 8254107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic connections of layer III of striate cortex in squirrel monkey and bush baby: correlations with patterns of cytochrome oxidase.
    Lachica EA; Beck PD; Casagrande VA
    J Comp Neurol; 1993 Mar; 329(2):163-87. PubMed ID: 8384222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunohistochemical localization of calcium-binding proteins, parvalbumin and calbindin-D 28k, in the adult and developing visual cortex of cats: a light and electron microscopic study.
    Stichel CC; Singer W; Heizmann CW; Norman AW
    J Comp Neurol; 1987 Aug; 262(4):563-77. PubMed ID: 3667965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local circuit neurons immunoreactive for calretinin, calbindin D-28k or parvalbumin in monkey prefrontal cortex: distribution and morphology.
    Condé F; Lund JS; Jacobowitz DM; Baimbridge KG; Lewis DA
    J Comp Neurol; 1994 Mar; 341(1):95-116. PubMed ID: 8006226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of calcium-binding proteins within the parallel visual pathways of a primate (Galago crassicaudatus).
    Johnson JK; Casagrande VA
    J Comp Neurol; 1995 May; 356(2):238-60. PubMed ID: 7629317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parvalbumin and calbindin D-28k immunoreactivities coexist within cytochrome oxidase-rich compartments of squirrel monkey area 18.
    Blümcke I; Celio MR
    Exp Brain Res; 1992; 92(1):39-45. PubMed ID: 1336734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term neurochemical changes after visual cortical lesions in the adult cat.
    Huxlin KR; Pasternak T
    J Comp Neurol; 2001 Jan; 429(2):221-41. PubMed ID: 11116216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative distribution of parvalbumin, calretinin, and calbindin D-28k immunoreactive neurons in the visual cortex of normal and Alzheimer cases.
    Leuba G; Kraftsik R; Saini K
    Exp Neurol; 1998 Aug; 152(2):278-91. PubMed ID: 9710527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of cytochrome oxidase and parvalbumin in the primary visual cortex of the adult and neonate monkey, Callithrix jacchus.
    Spatz WB; Illing RB; Weisenhorn DM
    J Comp Neurol; 1994 Jan; 339(4):519-34. PubMed ID: 8144744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative light and electron microscopic analysis of cytochrome oxidase-rich zones in the striate cortex of the squirrel monkey.
    Carroll EW; Wong-Riley MT
    J Comp Neurol; 1984 Jan; 222(1):1-17. PubMed ID: 6321561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative light and electron microscopic analysis of cytochrome oxidase-rich zones in V II prestriate cortex of the squirrel monkey.
    Wong-Riley MT; Carroll EW
    J Comp Neurol; 1984 Jan; 222(1):18-37. PubMed ID: 6321563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of axoplasmic transport in the developing visual system of the rat: IV. Quantitative Golgi, electron microscopic, and histochemical analyses of the maturation of the visual cortex.
    Matthews MA; Riccio RV
    Am J Anat; 1984 Sep; 171(1):107-31. PubMed ID: 6207722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Striate cortex in dichromatic and trichromatic marmosets: neurochemical compartmentalization and geniculate input.
    Solomon SG
    J Comp Neurol; 2002 Sep; 450(4):366-81. PubMed ID: 12209849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytochrome oxidase in Alzheimer's disease: biochemical, histochemical, and immunohistochemical analyses of the visual and other systems.
    Wong-Riley M; Antuono P; Ho KC; Egan R; Hevner R; Liebl W; Huang Z; Rachel R; Jones J
    Vision Res; 1997 Dec; 37(24):3593-608. PubMed ID: 9425533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic cortical connections in macaque visual area V2: evidence for interaction between different functional streams.
    Levitt JB; Yoshioka T; Lund JS
    J Comp Neurol; 1994 Apr; 342(4):551-70. PubMed ID: 8040365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of calbindin-D28k immunoreactivity in the monkey temporal lobe: the amygdaloid complex.
    Pitkänen A; Amaral DG
    J Comp Neurol; 1993 May; 331(2):199-224. PubMed ID: 7685361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterned distribution of immunoreactive astroglial processes in the striate (V1) cortex of New World monkeys.
    Colombo JA; Schleicher A; Zilles K
    Glia; 1999 Jan; 25(1):85-92. PubMed ID: 9888300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsic laminar lattice connections in primate visual cortex.
    Rockland KS; Lund JS
    J Comp Neurol; 1983 May; 216(3):303-18. PubMed ID: 6306066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calbindin D-28k immunoreactivity in the temporal neocortex in patients with Alzheimer's disease.
    Ferrer I; Tuñon T; Soriano E; del Rio A; Iraizoz I; Fonseca M; Guionnet N
    Clin Neuropathol; 1993; 12(1):53-8. PubMed ID: 8440080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.