BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30221599)

  • 1. Drug Target Selection for Trypanosoma cruzi Metabolism by Metabolic Control Analysis and Kinetic Modeling.
    Saavedra E; González-Chávez Z; Moreno-Sánchez R; Michels PAM
    Curr Med Chem; 2019; 26(36):6652-6671. PubMed ID: 30221599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic Control Analysis for Drug Target Prioritization in Trypanosomatids.
    González-Chávez Z; Vázquez C; Moreno-Sánchez R; Saavedra E
    Methods Mol Biol; 2020; 2116():689-718. PubMed ID: 32221950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug target validation of the trypanothione pathway enzymes through metabolic modelling.
    Olin-Sandoval V; González-Chávez Z; Berzunza-Cruz M; Martínez I; Jasso-Chávez R; Becker I; Espinoza B; Moreno-Sánchez R; Saavedra E
    FEBS J; 2012 May; 279(10):1811-33. PubMed ID: 22394478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic control analysis of the Trypanosoma cruzi peroxide detoxification pathway identifies tryparedoxin as a suitable drug target.
    González-Chávez Z; Olin-Sandoval V; Rodíguez-Zavala JS; Moreno-Sánchez R; Saavedra E
    Biochim Biophys Acta; 2015 Feb; 1850(2):263-73. PubMed ID: 25450181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gamma-glutamylcysteine synthetase and tryparedoxin 1 exert high control on the antioxidant system in Trypanosoma cruzi contributing to drug resistance and infectivity.
    González-Chávez Z; Vázquez C; Mejia-Tlachi M; Márquez-Dueñas C; Manning-Cela R; Encalada R; Rodríguez-Enríquez S; Michels PAM; Moreno-Sánchez R; Saavedra E
    Redox Biol; 2019 Sep; 26():101231. PubMed ID: 31203195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting trypanothione metabolism in trypanosomatid human parasites.
    Olin-Sandoval V; Moreno-Sánchez R; Saavedra E
    Curr Drug Targets; 2010 Dec; 11(12):1614-30. PubMed ID: 20735352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification.
    Irigoín F; Cibils L; Comini MA; Wilkinson SR; Flohé L; Radi R
    Free Radic Biol Med; 2008 Sep; 45(6):733-42. PubMed ID: 18588970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Key proteins in the polyamine-trypanothione pathway as drug targets against Trypanosoma cruzi.
    Maya JD; Salas CO; Aguilera-Venegas B; Diaz MV; López-Muñoz R
    Curr Med Chem; 2014; 21(15):1757-71. PubMed ID: 24251576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors.
    Bond CS; Zhang Y; Berriman M; Cunningham ML; Fairlamb AH; Hunter WN
    Structure; 1999 Jan; 7(1):81-9. PubMed ID: 10368274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Buthionine sulfoximine is a multitarget inhibitor of trypanothione synthesis in Trypanosoma cruzi.
    Vázquez C; Mejia-Tlachi M; González-Chávez Z; Silva A; Rodríguez-Zavala JS; Moreno-Sánchez R; Saavedra E
    FEBS Lett; 2017 Dec; 591(23):3881-3894. PubMed ID: 29127710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic control analysis of the transsulfuration pathway and the compensatory role of the cysteine transport in Trypanosoma cruzi.
    Vázquez C; Encalada R; Belmont-Díaz J; Rivera M; Alvarez S; Nogueda-Torres B; Saavedra E
    Biosystems; 2023 Dec; 234():105066. PubMed ID: 37898397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct mitochondrial and cytosolic enzymes mediate trypanothione-dependent peroxide metabolism in Trypanosoma cruzi.
    Wilkinson SR; Temperton NJ; Mondragon A; Kelly JM
    J Biol Chem; 2000 Mar; 275(11):8220-5. PubMed ID: 10713147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trypanothione biosynthesis in Leishmania major.
    Oza SL; Shaw MP; Wyllie S; Fairlamb AH
    Mol Biochem Parasitol; 2005 Jan; 139(1):107-16. PubMed ID: 15610825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of trypanothione synthetase from Trypanosoma brucei.
    Oza SL; Ariyanayagam MR; Aitcheson N; Fairlamb AH
    Mol Biochem Parasitol; 2003 Sep; 131(1):25-33. PubMed ID: 12967709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymes of the trypanothione metabolism as targets for antitrypanosomal drug development.
    Schmidt A; Krauth-Siegel RL
    Curr Top Med Chem; 2002 Nov; 2(11):1239-59. PubMed ID: 12171583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, synthesis and biological evaluation of new potent 5-nitrofuryl derivatives as anti-Trypanosoma cruzi agents. Studies of trypanothione binding site of trypanothione reductase as target for rational design.
    Aguirre G; Cabrera E; Cerecetto H; Di Maio R; González M; Seoane G; Duffaut A; Denicola A; Gil MJ; Martínez-Merino V
    Eur J Med Chem; 2004 May; 39(5):421-31. PubMed ID: 15110968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trypanothione: a novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids.
    Fairlamb AH; Blackburn P; Ulrich P; Chait BT; Cerami A
    Science; 1985 Mar; 227(4693):1485-7. PubMed ID: 3883489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the Cross-Talk of Redox Metabolism and Fe-S Cluster Biogenesis in Leishmania Through Systems Biology Approach.
    Kumar A; Chauhan N; Singh S
    Front Cell Infect Microbiol; 2019; 9():15. PubMed ID: 30778378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic control analysis as a strategy to identify therapeutic targets, the case of cancer glycolysis.
    Marín-Hernández Á; Saavedra E
    Biosystems; 2023 Sep; 231():104986. PubMed ID: 37506818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyamine metabolism in Leishmania: from arginine to trypanothione.
    Colotti G; Ilari A
    Amino Acids; 2011 Feb; 40(2):269-85. PubMed ID: 20512387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.