These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 30221625)

  • 1. Hebbian learning for online prediction, neural recall and classical conditioning of anthropomimetic robot arm motions.
    Feldotto B; Walter F; Röhrbein F; Knoll A
    Bioinspir Biomim; 2018 Oct; 13(6):066009. PubMed ID: 30221625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous Online Sequence Learning with an Unsupervised Neural Network Model.
    Cui Y; Ahmad S; Hawkins J
    Neural Comput; 2016 Nov; 28(11):2474-2504. PubMed ID: 27626963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model-Driven Analysis of Eyeblink Classical Conditioning Reveals the Underlying Structure of Cerebellar Plasticity and Neuronal Activity.
    Antonietti A; Casellato C; D'Angelo E; Pedrocchi A
    IEEE Trans Neural Netw Learn Syst; 2017 Nov; 28(11):2748-2762. PubMed ID: 27608482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical HMM based learning of navigation primitives for cooperative robotic endovascular catheterization.
    Rafii-Tari H; Liu J; Payne CJ; Bicknell C; Yang GZ
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):496-503. PubMed ID: 25333155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of vibrotactile feedback on human learning of arm motions.
    Bark K; Hyman E; Tan F; Cha E; Jax SA; Buxbaum LJ; Kuchenbecker KJ
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jan; 23(1):51-63. PubMed ID: 25486644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust sensorimotor representation to physical interaction changes in humanoid motion learning.
    Shimizu T; Saegusa R; Ikemoto S; Ishiguro H; Metta G
    IEEE Trans Neural Netw Learn Syst; 2015 May; 26(5):1035-47. PubMed ID: 25029488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Online learning and adaptation of patient support during ADL training.
    Guidali M; Schlink P; Duschau-Wicke A; Riener R
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975434. PubMed ID: 22275635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unsupervised learning and temporal context to recall complex robot trajectories.
    Barreto GA; Araújo AF
    Int J Neural Syst; 2001 Feb; 11(1):11-22. PubMed ID: 11310551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isotropic-sequence-order learning in a closed-loop behavioural system.
    Porr B; Wörgötter F
    Philos Trans A Math Phys Eng Sci; 2003 Oct; 361(1811):2225-44. PubMed ID: 14599317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A data-driven approach for motion planning of industrial robots controlled by high-level motion commands.
    Hou S; Bdiwi M; Rashid A; Krusche S; Ihlenfeldt S
    Front Robot AI; 2022; 9():1030668. PubMed ID: 36714803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental word grounding through a growing neural network with a humanoid robot.
    He X; Kojima R; Hasegawa O
    IEEE Trans Syst Man Cybern B Cybern; 2007 Apr; 37(2):451-62. PubMed ID: 17416171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards a real-time interface between a biomimetic model of sensorimotor cortex and a robotic arm.
    Dura-Bernal S; Chadderdon GL; Neymotin SA; Francis JT; Lytton WW
    Pattern Recognit Lett; 2014 Jan; 36():204-212. PubMed ID: 26709323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning anticipation via spiking networks: application to navigation control.
    Arena P; Fortuna L; Frasca M; Patané L
    IEEE Trans Neural Netw; 2009 Feb; 20(2):202-16. PubMed ID: 19150797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Neurorobotics Platform Robot Designer: Modeling Morphologies for Embodied Learning Experiments.
    Feldotto B; Morin FO; Knoll A
    Front Neurorobot; 2022; 16():856727. PubMed ID: 35548779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robot End Effector Tracking Using Predictive Multisensory Integration.
    Wijesinghe LP; Triesch J; Shi BE
    Front Neurorobot; 2018; 12():66. PubMed ID: 30386227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fuzzy neuronal model of motor control inspired by cerebellar pathways to online and gradually learn inverse biomechanical functions in the presence of delay.
    Salimi-Badr A; Ebadzadeh MM; Darlot C
    Biol Cybern; 2017 Dec; 111(5-6):421-438. PubMed ID: 28993878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The conditions that promote fear learning: prediction error and Pavlovian fear conditioning.
    Li SS; McNally GP
    Neurobiol Learn Mem; 2014 Feb; 108():14-21. PubMed ID: 23684989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic Approaches for Human Arm Motion Generation: Literature Review and Future Directions.
    Trivedi U; Menychtas D; Alqasemi R; Dubey R
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Associative memory for online learning in noisy environments using self-organizing incremental neural network.
    Sudo A; Sato A; Hasegawa O
    IEEE Trans Neural Netw; 2009 Jun; 20(6):964-72. PubMed ID: 19398402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-inspired homogeneous multi-scale place recognition.
    Chen Z; Lowry S; Jacobson A; Hasselmo ME; Milford M
    Neural Netw; 2015 Dec; 72():48-61. PubMed ID: 26576467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.