BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30221936)

  • 1. Molecular Recognition of Methionine-Terminated Peptides by Cucurbit[8]uril.
    Hirani Z; Taylor HF; Babcock EF; Bockus AT; Varnado CD; Bielawski CW; Urbach AR
    J Am Chem Soc; 2018 Sep; 140(38):12263-12269. PubMed ID: 30221936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence-specific, nanomolar peptide binding via cucurbit[8]uril-induced folding and inclusion of neighboring side chains.
    Smith LC; Leach DG; Blaylock BE; Ali OA; Urbach AR
    J Am Chem Soc; 2015 Mar; 137(10):3663-9. PubMed ID: 25710854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence-specific recognition and cooperative dimerization of N-terminal aromatic peptides in aqueous solution by a synthetic host.
    Heitmann LM; Taylor AB; Hart PJ; Urbach AR
    J Am Chem Soc; 2006 Sep; 128(38):12574-81. PubMed ID: 16984208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cucurbit[8]uril sponge.
    Ramalingam V; Kwee SK; Ryno LM; Urbach AR
    Org Biomol Chem; 2012 Nov; 10(43):8587-9. PubMed ID: 23042328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge-mediated recognition of N-terminal tryptophan in aqueous solution by a synthetic host.
    Bush ME; Bouley ND; Urbach AR
    J Am Chem Soc; 2005 Oct; 127(41):14511-7. PubMed ID: 16218648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benzobis(imidazolium)-cucurbit[8]uril complexes for binding and sensing aromatic compounds in aqueous solution.
    Biedermann F; Rauwald U; Cziferszky M; Williams KA; Gann LD; Guo BY; Urbach AR; Bielawski CW; Scherman OA
    Chemistry; 2010 Dec; 16(46):13716-22. PubMed ID: 21058380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supramolecular Recognition of Amino Acids by Twisted Cucurbit[14]uril.
    Zhang J; Xi YY; Li Q; Tang Q; Wang R; Huang Y; Tao Z; Xue SF; Lindoy LF; Wei G
    Chem Asian J; 2016 Aug; 11(16):2250-4. PubMed ID: 27349365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein recognition by cucurbit[6]uril: high affinity N-terminal complexation.
    Ramberg KO; Engilberge S; Guagnini F; Crowley PB
    Org Biomol Chem; 2021 Jan; 19(4):837-844. PubMed ID: 33406171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Selective Cucurbit[8]uril-Peptide Beacon Ensemble for the Ratiometric Fluorescence Detection of Peptides.
    Maity D; Assaf KI; Sicking W; Hirschhäuser C; Nau WM; Schmuck C
    Chemistry; 2019 Oct; 25(57):13088-13093. PubMed ID: 31441544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cucurbit[7]uril-mediated Histidine Dimerization: Exploring the Structure and Binding Mechanism.
    Zaorska E; Malinska M
    Chemistry; 2024 Feb; 30(10):e202302250. PubMed ID: 38055216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular recognition of insulin by a synthetic receptor.
    Chinai JM; Taylor AB; Ryno LM; Hargreaves ND; Morris CA; Hart PJ; Urbach AR
    J Am Chem Soc; 2011 Jun; 133(23):8810-3. PubMed ID: 21473587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Binary Bivalent Supramolecular Assembly Platform Based on Cucurbit[8]uril and Dimeric Adapter Protein 14-3-3.
    de Vink PJ; Briels JM; Schrader T; Milroy LG; Brunsveld L; Ottmann C
    Angew Chem Int Ed Engl; 2017 Jul; 56(31):8998-9002. PubMed ID: 28510303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cucurbit[8]uril Binds Nonterminal Dipeptide Sites with High Affinity and Induces a Type II β-Turn.
    Suating P; Kimberly LB; Ewe MB; Chang SL; Fontenot JM; Sultane PR; Bielawski CW; Decato DA; Berryman OB; Taylor AB; Urbach AR
    J Am Chem Soc; 2024 Mar; 146(11):7649-7657. PubMed ID: 38348472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cucurbit[7]uril: a high-affinity host for encapsulation of amino saccharides and supramolecular stabilization of their α-anomers in water.
    Jang Y; Natarajan R; Ko YH; Kim K
    Angew Chem Int Ed Engl; 2014 Jan; 53(4):1003-7. PubMed ID: 24311534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical prediction of nanomolar and sequence-selective binding of synthetic supramolecular cucurbit[7]uril to N-terminal Leu-containing tripeptides.
    Zhao Y; Li F; Ma F; Zhi J; Wu G; Zheng X
    Phys Chem Chem Phys; 2023 Mar; 25(11):7893-7900. PubMed ID: 36857719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence-specific inhibition of a nonspecific protease.
    Logsdon LA; Urbach AR
    J Am Chem Soc; 2013 Aug; 135(31):11414-6. PubMed ID: 23883194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlating solution binding and ESI-MS stabilities by incorporating solvation effects in a confined cucurbit[8]uril system.
    Rauwald U; Biedermann F; Deroo S; Robinson CV; Scherman OA
    J Phys Chem B; 2010 Jul; 114(26):8606-15. PubMed ID: 20550146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of Cooperativity in Ternary Peptide-Cucurbit[8]uril Complexes.
    Cavatorta E; Jonkheijm P; Huskens J
    Chemistry; 2017 Mar; 23(17):4046-4050. PubMed ID: 28195371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Host-guest interaction of 3-hydroxyflavone and 7-hydroxyflavone with cucurbit [7]uril: A spectroscopic and calorimetric approach.
    Ahmed SA; Maity B; Duley SS; Seth D
    J Photochem Photobiol B; 2017 Mar; 168():132-141. PubMed ID: 28214719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering the specific high-affinity binding of cucurbit[7]uril to amino acids in water.
    Lee JW; Lee HH; Ko YH; Kim K; Kim HI
    J Phys Chem B; 2015 Apr; 119(13):4628-36. PubMed ID: 25757499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.