These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 3022197)
1. GABA enhances acetylcholine release from hippocampal nerve endings through a mechanism blocked by a GABA uptake inhibitor. Bonanno G; Raiteri M Neurosci Lett; 1986 Oct; 70(3):360-3. PubMed ID: 3022197 [TBL] [Abstract][Full Text] [Related]
2. Cholinergic nerve terminals of human cerebral cortex possess a GABA transporter whose activation induces release of acetylcholine. Bonanno G; Ruelle A; Andrioli GC; Raiteri M Brain Res; 1991 Jan; 539(2):191-5. PubMed ID: 2054596 [TBL] [Abstract][Full Text] [Related]
3. Presence of a gamma-aminobutyric acid (GABA) uptake system on cholinergic terminals of rat hippocampus: evidence for neuronal coexistence of acetylcholine and GABA? Bonanno G; Raiteri M J Pharmacol Exp Ther; 1987 Jan; 240(1):294-7. PubMed ID: 3806391 [TBL] [Abstract][Full Text] [Related]
4. Carriers for GABA and noradrenaline uptake coexist on the same nerve terminal in rat hippocampus. Bonanno G; Raiteri M Eur J Pharmacol; 1987 Apr; 136(3):303-10. PubMed ID: 3038566 [TBL] [Abstract][Full Text] [Related]
5. Regional selectivity of a gamma-aminobutyric acid-induced [3H]acetylcholine release sensitive to inhibitors of gamma-aminobutyric acid uptake. Bonanno G; Raiteri M J Neurochem; 1987 May; 48(5):1454-8. PubMed ID: 3559559 [TBL] [Abstract][Full Text] [Related]
6. Coexistence of carriers for dopamine and GABA uptake on a same nerve terminal in the rat brain. Bonanno G; Raiteri M Br J Pharmacol; 1987 May; 91(1):237-43. PubMed ID: 3594080 [TBL] [Abstract][Full Text] [Related]
7. gamma-Aminobutyric acid (GABA) stimulates somatostatin release following activation of a GABA uptake carrier located on somatostatin nerve endings of rat cerebral cortex. Raiteri M; Bonanno G; Fedele E; Fontana G; Gemignani A J Pharmacol Exp Ther; 1991 Jan; 256(1):88-93. PubMed ID: 1671101 [TBL] [Abstract][Full Text] [Related]
8. Effects of intravenous general anesthetics on [3H]GABA release from rat cortical synaptosomes. Murugaiah KD; Hemmings HC Anesthesiology; 1998 Oct; 89(4):919-28. PubMed ID: 9778010 [TBL] [Abstract][Full Text] [Related]
9. Release-regulating autoreceptors of the GABAB-type in human cerebral cortex. Bonanno G; Cavazzani P; Andrioli GC; Asaro D; Pellegrini G; Raiteri M Br J Pharmacol; 1989 Feb; 96(2):341-6. PubMed ID: 2538189 [TBL] [Abstract][Full Text] [Related]
10. Glutamic acid and gamma-aminobutyric acid modulate each other's release through heterocarriers sited on the axon terminals of rat brain. Bonanno G; Pittaluga A; Fedele E; Fontana G; Raiteri M J Neurochem; 1993 Jul; 61(1):222-30. PubMed ID: 8099950 [TBL] [Abstract][Full Text] [Related]
11. GABA terminal autoreceptors in the pars compacta and in the pars reticulata of the rat substantia nigra are GABAB. Giralt MT; Bonanno G; Raiteri M Eur J Pharmacol; 1990 Jan; 175(2):137-44. PubMed ID: 2155793 [TBL] [Abstract][Full Text] [Related]
12. Studies on [3H]GABA and endogenous GABA release in rat cerebral cortex suggest the presence of autoreceptors of the GABAB type. Pittaluga A; Asaro D; Pellegrini G; Raiteri M Eur J Pharmacol; 1987 Nov; 144(1):45-52. PubMed ID: 2830119 [TBL] [Abstract][Full Text] [Related]
13. 3H-ACh release from guinea pig gallbladder evoked by GABA through the bicuculline-sensitive GABA receptor. Saito N; Taniyama K; Tanaka C Naunyn Schmiedebergs Arch Pharmacol; 1984 May; 326(1):45-8. PubMed ID: 6088998 [TBL] [Abstract][Full Text] [Related]
14. Inhibition by KF17837 of adenosine A2A receptor-mediated modulation of striatal GABA and ACh release. Kurokawa M; Kirk IP; Kirkpatrick KA; Kase H; Richardson PJ Br J Pharmacol; 1994 Sep; 113(1):43-8. PubMed ID: 7812630 [TBL] [Abstract][Full Text] [Related]
15. Release-regulating GABAA receptors are present on noradrenergic nerve terminals in selective areas of the rat brain. Bonanno G; Raiteri M Synapse; 1987; 1(3):254-7. PubMed ID: 2850623 [TBL] [Abstract][Full Text] [Related]
16. Insulin-like growth factor-I inhibits endogenous acetylcholine release from the rat hippocampal formation: possible involvement of GABA in mediating the effects. Seto D; Zheng WH; McNicoll A; Collier B; Quirion R; Kar S Neuroscience; 2002; 115(2):603-12. PubMed ID: 12421625 [TBL] [Abstract][Full Text] [Related]
17. Presynaptic mechanisms underlying the gamma-aminobutyric acid-evoked receptor-independent release of [3H]norepinephrine in rat hippocampus. Bonanno G; Fontana G; Fedele E; Robino G; Raiteri M J Neurochem; 1989 Jun; 52(6):1854-8. PubMed ID: 2542451 [TBL] [Abstract][Full Text] [Related]
18. gamma-Aminobutyric acid and glycine modulate each other's release through heterocarriers sited on the releasing axon terminals of rat CNS. Raiteri M; Bonanno G; Pende M J Neurochem; 1992 Oct; 59(4):1481-9. PubMed ID: 1402899 [TBL] [Abstract][Full Text] [Related]
19. Effect of gamma-aminobutyric acid agonists, glycine, taurine and neuropeptides on acetylcholine release from the rabbit retina. Cunningham JR; Neal MJ J Physiol; 1983 Mar; 336():563-77. PubMed ID: 6135799 [TBL] [Abstract][Full Text] [Related]
20. Prenatal diazepam exposure functionally alters the GABA(A) receptor that modulates [3H]noradrenaline release from rat hippocampal synaptosomes. Martire M; Altobelli D; Cannizzaro C; Maurizi S; Preziosi P Dev Neurosci; 2002; 24(1):71-8. PubMed ID: 12145412 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]