BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 30222341)

  • 1. Role of Polar and Nonpolar Groups in the Activity of Antifreeze Proteins: A Molecular Dynamics Simulation Study.
    Midya US; Bandyopadhyay S
    J Phys Chem B; 2018 Oct; 122(40):9389-9398. PubMed ID: 30222341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Study of Differences between Antifreeze Activity of Type-III Antifreeze Protein from Ocean Pout and Its Mutant.
    Kumari S; Muthachikavil AV; Tiwari JK; Punnathanam SN
    Langmuir; 2020 Mar; 36(9):2439-2448. PubMed ID: 32069407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydration behavior at the ice-binding surface of the Tenebrio molitor antifreeze protein.
    Midya US; Bandyopadhyay S
    J Phys Chem B; 2014 May; 118(18):4743-52. PubMed ID: 24725212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ordered hydration layer mediated ice adsorption of a globular antifreeze protein: mechanistic insight.
    Chakraborty S; Jana B
    Phys Chem Chem Phys; 2019 Sep; 21(35):19298-19310. PubMed ID: 31451813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of Tenebrio Molitor Antifreeze Protein with Ice Crystal: Insights from Molecular Dynamics Simulations.
    Ramya L; Ramakrishnan V
    Mol Inform; 2016 Jul; 35(6-7):268-77. PubMed ID: 27492241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of antifreeze proteins on the ice/water interface.
    Todde G; Hovmöller S; Laaksonen A
    J Phys Chem B; 2015 Feb; 119(8):3407-13. PubMed ID: 25611783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High water mobility on the ice-binding surface of a hyperactive antifreeze protein.
    Modig K; Qvist J; Marshall CB; Davies PL; Halle B
    Phys Chem Chem Phys; 2010 Sep; 12(35):10189-97. PubMed ID: 20668761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidating the Sluggish Water Dynamics at the Ice-Binding Surface of the Hyperactive
    Midya US; Bandyopadhyay S
    J Phys Chem B; 2023 Jan; 127(1):121-132. PubMed ID: 36594578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of hydrophobic and hydrogen-bond interactions on the binding affinity of antifreeze proteins to specific ice planes.
    Lee H
    J Mol Graph Model; 2019 Mar; 87():48-55. PubMed ID: 30502671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures, dynamics, and hydrogen-bond interactions of antifreeze proteins in TIP4P/Ice water and their dependence on force fields.
    Lee H
    PLoS One; 2018; 13(6):e0198887. PubMed ID: 29879205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen-Bonding and Hydrophobic Groups Contribute Equally to the Binding of Hyperactive Antifreeze and Ice-Nucleating Proteins to Ice.
    Hudait A; Qiu Y; Odendahl N; Molinero V
    J Am Chem Soc; 2019 May; 141(19):7887-7898. PubMed ID: 31020830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The remarkable hydration of the antifreeze protein Maxi: a computational study.
    Sharp KA
    J Chem Phys; 2014 Dec; 141(22):22D510. PubMed ID: 25494781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic Effect of Hyperactive Antifreeze Protein on Inhibition of Gas-Hydrate Growth by Hydrophobic and Hydrophilic Groups.
    Zhang N; Du YT; Yao PQ; Huang HY; Zhang LR; Zhang FS; Liu JJ
    J Phys Chem B; 2023 Dec; 127(49):10469-10477. PubMed ID: 38018897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Why does insect antifreeze protein from Tenebrio molitor produce pyramidal ice crystallites?
    Strom CS; Liu XY; Jia Z
    Biophys J; 2005 Oct; 89(4):2618-27. PubMed ID: 16055536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Operation of Kelvin Effect in the Activities of an Antifreeze Protein: A Molecular Dynamics Simulation Study.
    Midya US; Bandyopadhyay S
    J Phys Chem B; 2018 Mar; 122(12):3079-3087. PubMed ID: 29488381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Study on the Cryoprotective Effects of Three Recombinant Antifreeze Proteins from Pichia pastoris GS115 on Hydrated Gluten Proteins during Freezing.
    Liu M; Liang Y; Zhang H; Wu G; Wang L; Qian H; Qi X
    J Agric Food Chem; 2018 Jun; 66(24):6151-6161. PubMed ID: 29863868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of glycosylation on hydration behavior at the ice-binding surface of the Ocean Pout type III antifreeze protein: a molecular dynamics simulation.
    Halder S; Mukhopadhyay C
    J Biomol Struct Dyn; 2017 Dec; 35(16):3591-3604. PubMed ID: 27882844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. When are antifreeze proteins in solution essential for ice growth inhibition?
    Drori R; Davies PL; Braslavsky I
    Langmuir; 2015 Jun; 31(21):5805-11. PubMed ID: 25946514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The biological function of an insect antifreeze protein simulated by molecular dynamics.
    Kuiper MJ; Morton CJ; Abraham SE; Gray-Weale A
    Elife; 2015 May; 4():. PubMed ID: 25951514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of microbial antifreeze protein with intermediate activity suggests that a bound-water network is essential for hyperactivity.
    Khan NMU; Arai T; Tsuda S; Kondo H
    Sci Rep; 2021 Mar; 11(1):5971. PubMed ID: 33727595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.