These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 30222361)

  • 21. Surface effects on the atomic and electronic structure of unpassivated GaAs nanowires.
    Rosini M; Magri R
    ACS Nano; 2010 Oct; 4(10):6021-31. PubMed ID: 20853868
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anomalous Tensile Detwinning in Twinned Nanowires.
    Cheng G; Yin S; Chang TH; Richter G; Gao H; Zhu Y
    Phys Rev Lett; 2017 Dec; 119(25):256101. PubMed ID: 29303322
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of dislocations, twins, and stacking faults on the fracture behavior of nanocrystalline Ni nanowire under constant bending load: a molecular dynamics study.
    Reddy KV; Pal S
    J Mol Model; 2018 Sep; 24(10):277. PubMed ID: 30196452
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cyclic deformation leads to defect healing and strengthening of small-volume metal crystals.
    Wang ZJ; Li QJ; Cui YN; Liu ZL; Ma E; Li J; Sun J; Zhuang Z; Dao M; Shan ZW; Suresh S
    Proc Natl Acad Sci U S A; 2015 Nov; 112(44):13502-7. PubMed ID: 26483463
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide.
    Kolen'ko YV; Kovnir KA; Gavrilov AI; Garshev AV; Frantti J; Lebedev OI; Churagulov BR; Van Tendeloo G; Yoshimura M
    J Phys Chem B; 2006 Mar; 110(9):4030-8. PubMed ID: 16509693
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shock-induced breaking in the gold nanowire with the influence of defects and strain rates.
    Wang F; Gao Y; Zhu T; Zhao J
    Nanoscale; 2011 Apr; 3(4):1624-31. PubMed ID: 21350764
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the entangled growth of NaTaO3 cubes and Na2Ti3O7 wires in sodium hydroxide solution.
    Baumann SO; Liu C; Elser MJ; Sternig A; Siedl N; Berger T; Diwald O
    Chemistry; 2013 Jul; 19(31):10235-43. PubMed ID: 23780742
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ observation of size-scale effects on the mechanical properties of ZnO nanowires.
    Asthana A; Momeni K; Prasad A; Yap YK; Yassar RS
    Nanotechnology; 2011 Jul; 22(26):265712. PubMed ID: 21586815
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controlled synthesis of ultra-long vertically aligned BaTiO3 nanowire arrays for sensing and energy harvesting applications.
    Koka A; Zhou Z; Tang H; Sodano HA
    Nanotechnology; 2014 Sep; 25(37):375603. PubMed ID: 25148612
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Size-dependent fracture mode transition in copper nanowires.
    Peng C; Zhan Y; Lou J
    Small; 2012 Jun; 8(12):1889-94. PubMed ID: 22461261
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the wurtzite to tetragonal phase transformation in ZnO nanowires.
    Wang J; Shen Y; Song F; Ke F; Liao X; Lu C
    Nanotechnology; 2017 Apr; 28(16):165705. PubMed ID: 28273044
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deformation mechanisms in free-standing nanoscale thin films: a quantitative in situ transmission electron microscope study.
    Haque MA; Saif MT
    Proc Natl Acad Sci U S A; 2004 Apr; 101(17):6335-40. PubMed ID: 15084745
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reliable and cost effective design of intermetallic Ni2Si nanowires and direct characterization of its mechanical properties.
    Han SZ; Kang J; Kim SD; Choi SY; Kim HG; Lee J; Kim K; Lim SH; Han B
    Sci Rep; 2015 Oct; 5():15050. PubMed ID: 26456769
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reversibly Stretchable, Optically Transparent Radio-Frequency Antennas Based on Wavy Ag Nanowire Networks.
    Kim BS; Shin KY; Pyo JB; Lee J; Son JG; Lee SS; Park JH
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2582-90. PubMed ID: 26760896
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxyhydroxide of metallic nanowires in a molecular H
    Aral G; Islam MM; Wang YJ; Ogata S; Duin ACTV
    Phys Chem Chem Phys; 2018 Jun; 20(25):17289-17303. PubMed ID: 29901673
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solution-processed flexible polymer solar cells with silver nanowire electrodes.
    Yang L; Zhang T; Zhou H; Price SC; Wiley BJ; You W
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):4075-84. PubMed ID: 21899278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anelasticity in thin-shell nanolattices.
    Chen IT; Poblete FR; Bagal A; Zhu Y; Chang CH
    Proc Natl Acad Sci U S A; 2022 Sep; 119(38):e2201589119. PubMed ID: 36095191
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Designing Morphology in Epitaxial Silicon Nanowires: The Role of Gold, Surface Chemistry, and Phosphorus Doping.
    Kim S; Hill DJ; Pinion CW; Christesen JD; McBride JR; Cahoon JF
    ACS Nano; 2017 May; 11(5):4453-4462. PubMed ID: 28323413
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and stress relaxation of ZnO/Al-doped ZnO core-shell nanowires.
    Wang HB; Ma F; Li QQ; Dong CZ; Ma DY; Wang HT; Xu KW
    Nanoscale; 2013 Apr; 5(7):2857-63. PubMed ID: 23443575
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Superlattice nanowire pattern transfer (SNAP).
    Heath JR
    Acc Chem Res; 2008 Dec; 41(12):1609-17. PubMed ID: 18598059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.