BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 3022258)

  • 1. On the role of noradrenergic neurotransmission in the action of desipramine and amitriptyline in animal models of depression.
    Danysz W; Kostowski W; Kozak W; Hauptmann M
    Pol J Pharmacol Pharm; 1986; 38(3):285-98. PubMed ID: 3022258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the locus coeruleus system in an animal model for antidepressive activity.
    Kostowski W; Danysz W; Płaźnik A; Nowakowska E
    Pol J Pharmacol Pharm; 1984; 36(5):523-30. PubMed ID: 6099890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for the locus coeruleus involvement in desipramine action in animal models of depression.
    Danysz W; Kostowski W; Hauptmann M
    Pol J Pharmacol Pharm; 1985; 37(6):855-64. PubMed ID: 3938536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Possible relationship of the locus coeruleus--hippocampal noradrenergic neurons to depression and mode of action of antidepressant drugs.
    Kostowski W
    Pol J Pharmacol Pharm; 1985; 37(6):727-43. PubMed ID: 3008134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of long-term desipramine administration on noradrenergic neurotransmission: electrophysiological studies in the rat brain.
    Lacroix D; Blier P; Curet O; de Montigny C
    J Pharmacol Exp Ther; 1991 Jun; 257(3):1081-90. PubMed ID: 1646320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Are ascending noradrenergic and serotonergic pathways necessary for effects of electroconvulsive treatment? Clonidine hypothermia and forced swim study.
    Danysz W; Kostowski W; Hauptmann M; Bidzinski A
    Pol J Pharmacol Pharm; 1989; 41(1):15-22. PubMed ID: 2511561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesolimbic noradrenaline but not dopamine is responsible for organization of rat behavior in the forced swim test and an anti-immobilizing effect of desipramine.
    Płaźnik A; Danysz W; Kostowski W
    Pol J Pharmacol Pharm; 1985; 37(3):347-57. PubMed ID: 3934653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative studies on antidepressant action of alprazolam in different animal models.
    Kostowski W; Malatyńska E; Płaźnik A; Dyr W; Danysz W
    Pol J Pharmacol Pharm; 1986; 38(5-6):471-81. PubMed ID: 2883637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clonidine causes antidepressant-like effects in rats by activating alpha 2-adrenoceptors outside the locus coeruleus.
    Cervo L; Samanin R
    Eur J Pharmacol; 1991 Feb; 193(3):309-13. PubMed ID: 1675994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of lesions of the locus coeruleus and treatment with drugs affecting brain noradrenergic neurotransmission on dominant-subordinate behavior in rats competing for water.
    Plewako M; Kostowski W
    Pol J Pharmacol Pharm; 1984; 36(5):555-60. PubMed ID: 6099891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Further evidence that noradrenaline is not involved in the anti-immobility activity of chronic desipramine in the rat.
    Esposito E; Ossowska G; Samanin R
    Eur J Pharmacol; 1987 Apr; 136(3):429-32. PubMed ID: 3111866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacologic evidence that high dose chronic amitriptyline and desipramine down-regulate alpha 2-receptor-mediated hypothermia in the rat.
    Selden EM; Convery ME; Stites MM; Domino EF
    Arch Int Pharmacodyn Ther; 1986 Jun; 281(2):198-208. PubMed ID: 3019262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of alpha and beta adrenoceptors in locus coeruleus stimulation-induced reduction in rapid eye movement sleep in freely moving rats.
    Mallick BN; Singh S; Pal D
    Behav Brain Res; 2005 Mar; 158(1):9-21. PubMed ID: 15680190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional classification of antidepressants based on antagonism of swim stress-induced fos-like immunoreactivity.
    Duncan GE; Knapp DJ; Johnson KB; Breese GR
    J Pharmacol Exp Ther; 1996 May; 277(2):1076-89. PubMed ID: 8627519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on brain noradrenergic neurons in animal model for antidepressive activity.
    Kostowski W; Danysz W; Nowakowska E
    Psychopharmacol Bull; 1984; 20(2):320-2. PubMed ID: 6728997
    [No Abstract]   [Full Text] [Related]  

  • 16. Desipramine and noradrenergic neurotransmission in aging: failure to respond in aged laboratory animals.
    Bickford-Wimer PC; Parfitt K; Hoffer BJ; Freedman R
    Neuropharmacology; 1987 Jun; 26(6):597-605. PubMed ID: 3037423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Desipramine binding: relationship to central and sympathetic noradrenergic activity.
    Swann AC; Duman R; Hewitt L
    J Neurochem; 1985 Feb; 44(2):611-5. PubMed ID: 3917490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Desipramine-induced down regulation of beta-adrenergic receptors: effects of noradrenergic and serotonergic neuronal activities and of alpha 2-adrenergic receptor mediated mechanisms].
    Matsubara S
    Hokkaido Igaku Zasshi; 1987 Mar; 62(2):301-10. PubMed ID: 3038720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DSP-4 lesion of locus coeruleus does not affect spontaneous predatory behaviour in cats.
    Kubiak P; Zagrodzka J
    Acta Neurobiol Exp (Wars); 1993; 53(4):525-34. PubMed ID: 7509107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid decrease in rat brain beta adrenergic receptor binding during combined antidepressant alpha-2 antagonist treatment.
    Scott JA; Crews FT
    J Pharmacol Exp Ther; 1983 Mar; 224(3):640-6. PubMed ID: 6131122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.