These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 3022258)
1. On the role of noradrenergic neurotransmission in the action of desipramine and amitriptyline in animal models of depression. Danysz W; Kostowski W; Kozak W; Hauptmann M Pol J Pharmacol Pharm; 1986; 38(3):285-98. PubMed ID: 3022258 [TBL] [Abstract][Full Text] [Related]
2. Studies on the locus coeruleus system in an animal model for antidepressive activity. Kostowski W; Danysz W; Płaźnik A; Nowakowska E Pol J Pharmacol Pharm; 1984; 36(5):523-30. PubMed ID: 6099890 [TBL] [Abstract][Full Text] [Related]
3. Evidence for the locus coeruleus involvement in desipramine action in animal models of depression. Danysz W; Kostowski W; Hauptmann M Pol J Pharmacol Pharm; 1985; 37(6):855-64. PubMed ID: 3938536 [TBL] [Abstract][Full Text] [Related]
4. Possible relationship of the locus coeruleus--hippocampal noradrenergic neurons to depression and mode of action of antidepressant drugs. Kostowski W Pol J Pharmacol Pharm; 1985; 37(6):727-43. PubMed ID: 3008134 [TBL] [Abstract][Full Text] [Related]
5. Effects of long-term desipramine administration on noradrenergic neurotransmission: electrophysiological studies in the rat brain. Lacroix D; Blier P; Curet O; de Montigny C J Pharmacol Exp Ther; 1991 Jun; 257(3):1081-90. PubMed ID: 1646320 [TBL] [Abstract][Full Text] [Related]
6. Are ascending noradrenergic and serotonergic pathways necessary for effects of electroconvulsive treatment? Clonidine hypothermia and forced swim study. Danysz W; Kostowski W; Hauptmann M; Bidzinski A Pol J Pharmacol Pharm; 1989; 41(1):15-22. PubMed ID: 2511561 [TBL] [Abstract][Full Text] [Related]
7. Mesolimbic noradrenaline but not dopamine is responsible for organization of rat behavior in the forced swim test and an anti-immobilizing effect of desipramine. Płaźnik A; Danysz W; Kostowski W Pol J Pharmacol Pharm; 1985; 37(3):347-57. PubMed ID: 3934653 [TBL] [Abstract][Full Text] [Related]
8. Comparative studies on antidepressant action of alprazolam in different animal models. Kostowski W; Malatyńska E; Płaźnik A; Dyr W; Danysz W Pol J Pharmacol Pharm; 1986; 38(5-6):471-81. PubMed ID: 2883637 [TBL] [Abstract][Full Text] [Related]
9. Clonidine causes antidepressant-like effects in rats by activating alpha 2-adrenoceptors outside the locus coeruleus. Cervo L; Samanin R Eur J Pharmacol; 1991 Feb; 193(3):309-13. PubMed ID: 1675994 [TBL] [Abstract][Full Text] [Related]
10. The effects of lesions of the locus coeruleus and treatment with drugs affecting brain noradrenergic neurotransmission on dominant-subordinate behavior in rats competing for water. Plewako M; Kostowski W Pol J Pharmacol Pharm; 1984; 36(5):555-60. PubMed ID: 6099891 [TBL] [Abstract][Full Text] [Related]
11. Further evidence that noradrenaline is not involved in the anti-immobility activity of chronic desipramine in the rat. Esposito E; Ossowska G; Samanin R Eur J Pharmacol; 1987 Apr; 136(3):429-32. PubMed ID: 3111866 [TBL] [Abstract][Full Text] [Related]
12. Pharmacologic evidence that high dose chronic amitriptyline and desipramine down-regulate alpha 2-receptor-mediated hypothermia in the rat. Selden EM; Convery ME; Stites MM; Domino EF Arch Int Pharmacodyn Ther; 1986 Jun; 281(2):198-208. PubMed ID: 3019262 [TBL] [Abstract][Full Text] [Related]
13. Role of alpha and beta adrenoceptors in locus coeruleus stimulation-induced reduction in rapid eye movement sleep in freely moving rats. Mallick BN; Singh S; Pal D Behav Brain Res; 2005 Mar; 158(1):9-21. PubMed ID: 15680190 [TBL] [Abstract][Full Text] [Related]
14. Functional classification of antidepressants based on antagonism of swim stress-induced fos-like immunoreactivity. Duncan GE; Knapp DJ; Johnson KB; Breese GR J Pharmacol Exp Ther; 1996 May; 277(2):1076-89. PubMed ID: 8627519 [TBL] [Abstract][Full Text] [Related]
15. Studies on brain noradrenergic neurons in animal model for antidepressive activity. Kostowski W; Danysz W; Nowakowska E Psychopharmacol Bull; 1984; 20(2):320-2. PubMed ID: 6728997 [No Abstract] [Full Text] [Related]
16. Desipramine and noradrenergic neurotransmission in aging: failure to respond in aged laboratory animals. Bickford-Wimer PC; Parfitt K; Hoffer BJ; Freedman R Neuropharmacology; 1987 Jun; 26(6):597-605. PubMed ID: 3037423 [TBL] [Abstract][Full Text] [Related]
17. Desipramine binding: relationship to central and sympathetic noradrenergic activity. Swann AC; Duman R; Hewitt L J Neurochem; 1985 Feb; 44(2):611-5. PubMed ID: 3917490 [TBL] [Abstract][Full Text] [Related]
18. [Desipramine-induced down regulation of beta-adrenergic receptors: effects of noradrenergic and serotonergic neuronal activities and of alpha 2-adrenergic receptor mediated mechanisms]. Matsubara S Hokkaido Igaku Zasshi; 1987 Mar; 62(2):301-10. PubMed ID: 3038720 [TBL] [Abstract][Full Text] [Related]
19. DSP-4 lesion of locus coeruleus does not affect spontaneous predatory behaviour in cats. Kubiak P; Zagrodzka J Acta Neurobiol Exp (Wars); 1993; 53(4):525-34. PubMed ID: 7509107 [TBL] [Abstract][Full Text] [Related]
20. Rapid decrease in rat brain beta adrenergic receptor binding during combined antidepressant alpha-2 antagonist treatment. Scott JA; Crews FT J Pharmacol Exp Ther; 1983 Mar; 224(3):640-6. PubMed ID: 6131122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]