These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 30222583)

  • 1. Cophenetic Median Trees.
    Markin A; Eulenstein O
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1459-1470. PubMed ID: 30222583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Local Search for Euclidean Path-Difference Median Trees.
    Markin A; Eulenstein O
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1374-1385. PubMed ID: 29035224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computing Manhattan Path-Difference Median Trees: A Practical Local Search Approach.
    Markin A; Eulenstein O
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1063-1076. PubMed ID: 28650824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exact median-tree inference for unrooted reconciliation costs.
    Górecki P; Markin A; Eulenstein O
    BMC Evol Biol; 2020 Oct; 20(Suppl 1):136. PubMed ID: 33115401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exact solutions for species tree inference from discordant gene trees.
    Chang WC; Górecki P; Eulenstein O
    J Bioinform Comput Biol; 2013 Oct; 11(5):1342005. PubMed ID: 24131054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesizing large-scale species trees using the strict consensus approach.
    Moon J; Eulenstein O
    J Bioinform Comput Biol; 2017 Jun; 15(3):1740002. PubMed ID: 28513253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triplet supertree heuristics for the tree of life.
    Lin HT; Burleigh JG; Eulenstein O
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S8. PubMed ID: 19208181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Consensus of All Solutions for Intractable Phylogenetic Tree Inference.
    Tabaszewski P; Gorecki P; Markin A; Anderson T; Eulenstein O
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(1):149-161. PubMed ID: 31613775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The gene-duplication problem: near-linear time algorithms for NNI-based local searches.
    Bansal MS; Eulenstein O; Wehe A
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(2):221-31. PubMed ID: 19407347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fast algorithm for computing geodesic distances in tree space.
    Owen M; Provan JS
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(1):2-13. PubMed ID: 21071792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale analysis of phylogenetic search behavior.
    Park HJ; Sul SJ; Williams TL
    Adv Exp Med Biol; 2010; 680():35-42. PubMed ID: 20865484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cophenetic metrics for phylogenetic trees, after Sokal and Rohlf.
    Cardona G; Mir A; Rosselló F; Rotger L; Sánchez D
    BMC Bioinformatics; 2013 Jan; 14():3. PubMed ID: 23323711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstruction of ancestral genomic sequences using likelihood.
    Elias I; Tuller T
    J Comput Biol; 2007 Mar; 14(2):216-37. PubMed ID: 17456016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cubic time algorithms of amalgamating gene trees and building evolutionary scenarios.
    Lyubetsky VA; Rubanov LI; Rusin LY; Gorbunov KY
    Biol Direct; 2012 Dec; 7():48. PubMed ID: 23259766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The expected value of the squared cophenetic metric under the Yule and the uniform models.
    Cardona G; Mir A; Rosselló F; Rotger L
    Math Biosci; 2018 Jan; 295():73-85. PubMed ID: 29155134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minimizing the deep coalescence cost.
    Dąbkowski D; Tabaszewski P; Górecki P
    J Bioinform Comput Biol; 2018 Oct; 16(5):1840021. PubMed ID: 30419782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast Construction of Near Parsimonious Hybridization Networks for Multiple Phylogenetic Trees.
    Mirzaei S; Wu Y
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(3):565-70. PubMed ID: 27295640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PRec-I-DCM3: a parallel framework for fast and accurate large-scale phylogeny reconstruction.
    Dotsenko Y; Coarfa C; Nakhleh L; Mellor-Crummey J; Roshan U
    Int J Bioinform Res Appl; 2006; 2(4):407-19. PubMed ID: 18048181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exact and approximate limit behaviour of the Yule tree's cophenetic index.
    Bartoszek K
    Math Biosci; 2018 Sep; 303():26-45. PubMed ID: 29746815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MetaPIGA v2.0: maximum likelihood large phylogeny estimation using the metapopulation genetic algorithm and other stochastic heuristics.
    Helaers R; Milinkovitch MC
    BMC Bioinformatics; 2010 Jul; 11():379. PubMed ID: 20633263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.