These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 30222936)

  • 1. Biomechanical Assessment of the NIOSH Lifting Equation in Asymmetric Load-Handling Activities Using a Detailed Musculoskeletal Model.
    Behjati M; Arjmand N
    Hum Factors; 2019 Mar; 61(2):191-202. PubMed ID: 30222936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The National Institute for Occupational Safety and Health (NIOSH) Recommended Weight Generates Different Spine Loads in Load-Handling Activity Performed Using Stoop, Semi-squat and Full-Squat Techniques; a Full-Body Musculoskeletal Model Study.
    Dehghan P; Arjmand N
    Hum Factors; 2024 May; 66(5):1387-1398. PubMed ID: 36433743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of different lifting analysis tools in estimating lower spinal loads - Evaluation of NIOSH criterion.
    Ghezelbash F; Shirazi-Adl A; Plamondon A; Arjmand N
    J Biomech; 2020 Nov; 112():110024. PubMed ID: 32961423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictive equations for lumbar spine loads in load-dependent asymmetric one- and two-handed lifting activities.
    Arjmand N; Plamondon A; Shirazi-Adl A; Parnianpour M; Larivière C
    Clin Biomech (Bristol); 2012 Jul; 27(6):537-44. PubMed ID: 22265249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of load mass and position on the dynamic loading of the knees, shoulders and lumbar spine during lifting: a musculoskeletal modelling approach.
    Skals S; Bláfoss R; de Zee M; Andersen LL; Andersen MS
    Appl Ergon; 2021 Oct; 96():103491. PubMed ID: 34126573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Marker-less versus marker-based driven musculoskeletal models of the spine during static load-handling activities.
    Asadi F; Arjmand N
    J Biomech; 2020 Nov; 112():110043. PubMed ID: 32950760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subject-specific regression equations to estimate lower spinal loads during symmetric and asymmetric static lifting.
    Ghezelbash F; Shirazi-Adl A; El Ouaaid Z; Plamondon A; Arjmand N
    J Biomech; 2020 Mar; 102():109550. PubMed ID: 31932024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparisons of lumbar spine loads and kinematics in healthy and non-specific low back pain individuals during unstable lifting activities.
    Heidari E; Arjmand N; Kahrizi S
    J Biomech; 2022 Nov; 144():111344. PubMed ID: 36270086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does the asymmetry multiplier in the 1991 NIOSH lifting equation adequately control the biomechanical loading of the spine?
    Lavender SA; Li YC; Natarajan RN; Andersson GB
    Ergonomics; 2009 Jan; 52(1):71-9. PubMed ID: 19308820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From Stoop to Squat: A Comprehensive Analysis of Lumbar Loading Among Different Lifting Styles.
    von Arx M; Liechti M; Connolly L; Bangerter C; Meier ML; Schmid S
    Front Bioeng Biotechnol; 2021; 9():769117. PubMed ID: 34805121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative evaluation of six quantitative lifting tools to estimate spine loads during static activities.
    Rajaee MA; Arjmand N; Shirazi-Adl A; Plamondon A; Schmidt H
    Appl Ergon; 2015 May; 48():22-32. PubMed ID: 25683528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The load on the lumbar spine during asymmetrical bi-manual materials handling.
    Jäger M; Luttmann A
    Ergonomics; 1992; 35(7-8):783-805. PubMed ID: 1633789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An artificial neural network for full-body posture prediction in dynamic lifting activities and effects of its prediction errors on model-estimated spinal loads.
    Hosseini N; Arjmand N
    J Biomech; 2024 Jan; 162():111896. PubMed ID: 38072705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One versus two-handed lifting and lowering: lumbar spine loads and recommended one-handed limits protecting the lower back.
    Weston EB; Aurand AM; Dufour JS; Knapik GG; Marras WS
    Ergonomics; 2020 Apr; 63(4):505-521. PubMed ID: 32024437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of obesity on spinal loads during load-reaching activities: A subject- and kinematics-specific musculoskeletal modeling approach.
    Bahramian M; Arjmand N; El-Rich M; Parnianpour M
    J Biomech; 2023 Dec; 161():111770. PubMed ID: 37633816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relative performances of artificial neural network and regression mapping tools in evaluation of spinal loads and muscle forces during static lifting.
    Arjmand N; Ekrami O; Shirazi-Adl A; Plamondon A; Parnianpour M
    J Biomech; 2013 May; 46(8):1454-62. PubMed ID: 23541615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanics of changes in lumbar posture in static lifting.
    Arjmand N; Shirazi-Adl A
    Spine (Phila Pa 1976); 2005 Dec; 30(23):2637-48. PubMed ID: 16319750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effectiveness of a vacuum lifting system in reducing spinal load during airline baggage handling.
    Lu ML; Dufour JS; Weston EB; Marras WS
    Appl Ergon; 2018 Jul; 70():247-252. PubMed ID: 29866315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of lumbar spinal loading and trunk muscle forces during asymmetric lifting tasks: application of whole-body musculoskeletal modelling in OpenSim.
    Kim HK; Zhang Y
    Ergonomics; 2017 Apr; 60(4):563-576. PubMed ID: 27194401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Severe obesity effect on low back biomechanical stress of manual load lifting.
    Singh D; Park W; Hwang D; Levy MS
    Work; 2015 Jun; 51(2):337-48. PubMed ID: 25248524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.