These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 30222936)

  • 21. Sex-Dependent Estimation of Spinal Loads During Static Manual Material Handling Activities-Combined
    Firouzabadi A; Arjmand N; Pan F; Zander T; Schmidt H
    Front Bioeng Biotechnol; 2021; 9():750862. PubMed ID: 34796167
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of low back pain on the kinetics and kinematics of the lumbar spine - a combined in vivo and in silico investigation.
    Firouzabadi A; Arjmand N; Zhang T; Pumberger M; Schmidt H
    J Biomech; 2024 Feb; 164():111954. PubMed ID: 38310006
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hybrid musculoskeletal model-based 3D asymmetric lifting prediction and comparison with symmetric lifting.
    Xiang Y; Zaman R; Arefeen A; Quarnstrom J; Rakshit R; Yang J
    Proc Inst Mech Eng H; 2023 Jun; 237(6):770-781. PubMed ID: 37139889
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A braced arm-to-thigh (BATT) lifting technique reduces lumbar spine loads in healthy and low back pain participants.
    Beaucage-Gauvreau E; Brandon SCE; Robertson WSP; Fraser R; Freeman BJC; Graham RB; Thewlis D; Jones CF
    J Biomech; 2020 Feb; 100():109584. PubMed ID: 31898975
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Variation in spinal load and trunk dynamics during repeated lifting exertions.
    Granata KP; Marras WS; Davis KG
    Clin Biomech (Bristol); 1999 Jul; 14(6):367-75. PubMed ID: 10521617
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimating Compressive and Shear Forces at L5-S1: Exploring the Effects of Load Weight, Asymmetry, and Height Using Optical and Inertial Motion Capture Systems.
    Nail-Ulloa I; Zabala M; Sesek R; Chen H; Schall MC; Gallagher S
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544203
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimating lumbar spine loading when using back-support exoskeletons in lifting tasks.
    Madinei S; Nussbaum MA
    J Biomech; 2023 Jan; 147():111439. PubMed ID: 36638578
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lumbosacral loads in bedmaking.
    Milburn PD; Barrett RS
    Appl Ergon; 1999 Jun; 30(3):263-73. PubMed ID: 10327090
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of squat and stoop dynamic liftings: muscle forces and internal spinal loads.
    Bazrgari B; Shirazi-Adl A; Arjmand N
    Eur Spine J; 2007 May; 16(5):687-99. PubMed ID: 17103232
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low back load in airport baggage handlers.
    Koblauch H
    Dan Med J; 2016 Apr; 63(4):. PubMed ID: 27034189
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predictive equations to estimate spinal loads in symmetric lifting tasks.
    Arjmand N; Plamondon A; Shirazi-Adl A; Larivière C; Parnianpour M
    J Biomech; 2011 Jan; 44(1):84-91. PubMed ID: 20850750
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lumbar Facet Joint Kinematics and Load Effects During Dynamic Lifting.
    Chowdhury SK; Byrne RM; Zhou Y; Zhang X
    Hum Factors; 2018 Dec; 60(8):1130-1145. PubMed ID: 30074402
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coupled artificial neural networks to estimate 3D whole-body posture, lumbosacral moments, and spinal loads during load-handling activities.
    Aghazadeh F; Arjmand N; Nasrabadi AM
    J Biomech; 2020 Mar; 102():109332. PubMed ID: 31540822
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spinal segment ranges of motion, movement coordination, and three-dimensional kinematics during occupational activities in normal-weight and obese individuals.
    Ghasemi M; Arjmand N
    J Biomech; 2021 Jun; 123():110539. PubMed ID: 34044195
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identifying interactive effects of task demands in lifting on estimates of in vivo low back joint loads.
    Gooyers CE; Beach TAC; Frost DM; Howarth SJ; Callaghan JP
    Appl Ergon; 2018 Feb; 67():203-210. PubMed ID: 29122191
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Postural effects on biomechanical and psychophysical weight-lifting limits.
    Chaffin DB; Page GB
    Ergonomics; 1994 Apr; 37(4):663-76. PubMed ID: 8187750
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unilateral ankle immobilization alters the kinematics and kinetics of lifting.
    Beach TA; Frost DM; Clark JM; Maly MR; Callaghan JP
    Work; 2014; 47(2):221-34. PubMed ID: 23324721
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of attempted lifting speed on forces and torque exerted on the lumbar spine.
    Hall SJ
    Med Sci Sports Exerc; 1985 Aug; 17(4):440-4. PubMed ID: 4033399
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of spinal internal loads and lumbar curvature under holding static load at different trunk and knee positions.
    Kahrizi S; Parnianpour M; Firoozabadi SM; Kasemnejad A; Karimi E
    Pak J Biol Sci; 2007 Apr; 10(7):1036-43. PubMed ID: 19070047
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A biologically-assisted curved muscle model of the lumbar spine: Model validation.
    Hwang J; Knapik GG; Dufour JS; Best TM; Khan SN; Mendel E; Marras WS
    Clin Biomech (Bristol); 2016 Aug; 37():153-159. PubMed ID: 27484459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.