These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 30222976)

  • 1. Designing the Optimal Formulation for Biopharmaceuticals: A New Approach Combining Molecular Dynamics and Experiments.
    Arsiccio A; Paladini A; Pattarino F; Pisano R
    J Pharm Sci; 2019 Jan; 108(1):431-438. PubMed ID: 30222976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of critical process and formulation parameters affecting in-process stability of lactate dehydrogenase during the secondary drying stage of lyophilization: a mini freeze dryer study.
    Luthra S; Obert JP; Kalonia DS; Pikal MJ
    J Pharm Sci; 2007 Sep; 96(9):2242-50. PubMed ID: 17621675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications of Freezing and Freeze-Drying in Pharmaceutical Formulations.
    Izutsu KI
    Adv Exp Med Biol; 2018; 1081():371-383. PubMed ID: 30288720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Freeze-Drying of Proteins.
    Liu B; Zhou X
    Methods Mol Biol; 2021; 2180():683-702. PubMed ID: 32797443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid optimization of protein freeze-drying formulations using ultra scale-down and factorial design of experiment in microplates.
    Grant Y; Matejtschuk P; Dalby PA
    Biotechnol Bioeng; 2009 Dec; 104(5):957-64. PubMed ID: 19530082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability study perspective of the effect of freeze-drying using cryoprotectants on the structure of insulin loaded into PLGA nanoparticles.
    Fonte P; Soares S; Sousa F; Costa A; Seabra V; Reis S; Sarmento B
    Biomacromolecules; 2014 Oct; 15(10):3753-65. PubMed ID: 25180545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freeze-drying of proteins.
    Liu B; Zhou X
    Methods Mol Biol; 2015; 1257():459-76. PubMed ID: 25428023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using dextran of different molecular weights to achieve faster freeze-drying and improved storage stability of lactate dehydrogenase.
    Larsen BS; Skytte J; Svagan AJ; Meng-Lund H; Grohganz H; Löbmann K
    Pharm Dev Technol; 2019 Mar; 24(3):323-328. PubMed ID: 29781745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clarifying the role of cryo- and lyo-protectants in the biopreservation of proteins.
    Arsiccio A; Pisano R
    Phys Chem Chem Phys; 2018 Mar; 20(12):8267-8277. PubMed ID: 29528066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of stable lyophilized protein drug products.
    Remmele RL; Krishnan S; Callahan WJ
    Curr Pharm Biotechnol; 2012 Mar; 13(3):471-96. PubMed ID: 22283723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isomalt and its diastereomer mixtures as stabilizing excipients with freeze-dried lactate dehydrogenase.
    Tuderman AK; Strachan CJ; Juppo AM
    Int J Pharm; 2018 Mar; 538(1-2):287-295. PubMed ID: 29341910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Instability of therapeutic proteins - An overview of stresses, stabilization mechanisms and analytical techniques involved in lyophilized proteins.
    Butreddy A; Janga KY; Ajjarapu S; Sarabu S; Dudhipala N
    Int J Biol Macromol; 2021 Jan; 167():309-325. PubMed ID: 33275971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freeze-Drying of L-Arginine/Sucrose-Based Protein Formulations, Part 2: Optimization of Formulation Design and Freeze-Drying Process Conditions for an L-Arginine Chloride-Based Protein Formulation System.
    Stärtzel P; Gieseler H; Gieseler M; Abdul-Fattah AM; Adler M; Mahler HC; Goldbach P
    J Pharm Sci; 2015 Dec; 104(12):4241-4256. PubMed ID: 26422647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excipients in freeze-dried biopharmaceuticals: Contributions toward formulation stability and lyophilisation cycle optimisation.
    Bjelošević M; Zvonar Pobirk A; Planinšek O; Ahlin Grabnar P
    Int J Pharm; 2020 Feb; 576():119029. PubMed ID: 31953087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on formability of solid nanosuspensions during solidification: II novel roles of freezing stress and cryoprotectant property.
    Yue PF; Li G; Dan JX; Wu ZF; Wang CH; Zhu WF; Yang M
    Int J Pharm; 2014 Nov; 475(1-2):35-48. PubMed ID: 25158243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freeze-drying: A flourishing strategy to fabricate stable pharmaceutical and biological products.
    Abla KK; Mehanna MM
    Int J Pharm; 2022 Nov; 628():122233. PubMed ID: 36183914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of cryoprotectants on freezing, lyophilization, and storage of lyophilized recombinant alpha 1-antitrypsin formulations.
    Vemuri S; Yu CD; Roosdorp N
    PDA J Pharm Sci Technol; 1994; 48(5):241-6. PubMed ID: 8000898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Freeze-drying of nanosuspensions, 1: freezing rate versus formulation design as critical factors to preserve the original particle size distribution.
    Beirowski J; Inghelbrecht S; Arien A; Gieseler H
    J Pharm Sci; 2011 May; 100(5):1958-68. PubMed ID: 21374626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening of novel excipients for freeze-dried protein formulations.
    Holm TP; Meng-Lund H; Rantanen J; Jorgensen L; Grohganz H
    Eur J Pharm Biopharm; 2021 Mar; 160():55-64. PubMed ID: 33508435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freeze thaw: a simple approach for prediction of optimal cryoprotectant for freeze drying.
    Date PV; Samad A; Devarajan PV
    AAPS PharmSciTech; 2010 Mar; 11(1):304-13. PubMed ID: 20182826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.