These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 30223102)
1. Layer-by-layer electrochemical biosensors configuring xanthine oxidase and carbon nanotubes/graphene complexes for hypoxanthine and uric acid in human serum solutions. Si Y; Park JW; Jung S; Hwang GS; Goh E; Lee HJ Biosens Bioelectron; 2018 Dec; 121():265-271. PubMed ID: 30223102 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous determination of uric acid, xanthine and hypoxanthine at poly(pyrocatechol violet)/functionalized multi-walled carbon nanotubes composite film modified electrode. Wang Y Colloids Surf B Biointerfaces; 2011 Dec; 88(2):614-21. PubMed ID: 21856133 [TBL] [Abstract][Full Text] [Related]
3. Graphene-titanium dioxide nanocomposite based hypoxanthine sensor for assessment of meat freshness. Albelda JAV; Uzunoglu A; Santos GNC; Stanciu LA Biosens Bioelectron; 2017 Mar; 89(Pt 1):518-524. PubMed ID: 27020067 [TBL] [Abstract][Full Text] [Related]
5. Electrochemiluminescent biosensor for hypoxanthine based on the electrically heated carbon paste electrode modified with xanthine oxidase. Lin Z; Sun J; Chen J; Guo L; Chen Y; Chen G Anal Chem; 2008 Apr; 80(8):2826-31. PubMed ID: 18315011 [TBL] [Abstract][Full Text] [Related]
6. Design of a new hypoxanthine biosensor: xanthine oxidase modified carbon film and multi-walled carbon nanotube/carbon film electrodes. Torres AC; Ghica ME; Brett CM Anal Bioanal Chem; 2013 Apr; 405(11):3813-22. PubMed ID: 23263517 [TBL] [Abstract][Full Text] [Related]
7. A simple electrochemical approach to fabricate functionalized MWCNT-nanogold decorated PEDOT nanohybrid for simultaneous quantification of uric acid, xanthine and hypoxanthine. Sen S; Sarkar P Anal Chim Acta; 2020 Jun; 1114():15-28. PubMed ID: 32359511 [TBL] [Abstract][Full Text] [Related]
8. Examination of performance of glassy carbon paste electrode modified with gold nanoparticle and xanthine oxidase for xanthine and hypoxanthine detection. Cubukçu M; Timur S; Anik U Talanta; 2007 Dec; 74(3):434-9. PubMed ID: 18371660 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous electrochemical determination of uric acid, xanthine and hypoxanthine based on poly(L-arginine)/graphene composite film modified electrode. Zhang F; Wang Z; Zhang Y; Zheng Z; Wang C; Du Y; Ye W Talanta; 2012 May; 93():320-5. PubMed ID: 22483917 [TBL] [Abstract][Full Text] [Related]
10. Biocompatible phosphonic acid-functionalized silica nanoparticles for sensitive detection of hypoxanthine in real samples. Liu M; Chen S; Zhao X; Ye Y; Li J; Zhu Q; Zhao B; Zhao W; Huang X; Shen J Talanta; 2013 Dec; 117():536-42. PubMed ID: 24209378 [TBL] [Abstract][Full Text] [Related]
11. Electrochemical biosensing of galactose based on carbon materials: graphene versus multi-walled carbon nanotubes. Dalkıran B; Erden PE; Kılıç E Anal Bioanal Chem; 2016 Jun; 408(16):4329-39. PubMed ID: 27074783 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous determination of uric acid, xanthine, hypoxanthine and caffeine in human blood serum and urine samples using electrochemically reduced graphene oxide modified electrode. Raj MA; John SA Anal Chim Acta; 2013 Apr; 771():14-20. PubMed ID: 23522107 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous detection of ATP metabolites in human plasma and urine based on palladium nanoparticle and poly(bromocresol green) composite sensor. Raj M; Moon JM; Goyal RN; Park DS; Shim YB Biosens Bioelectron; 2019 Feb; 126():758-766. PubMed ID: 30554097 [TBL] [Abstract][Full Text] [Related]
14. Quantification of uric acid, xanthine and hypoxanthine in human serum by HPLC for pharmacodynamic studies. Cooper N; Khosravan R; Erdmann C; Fiene J; Lee JW J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Jun; 837(1-2):1-10. PubMed ID: 16631418 [TBL] [Abstract][Full Text] [Related]
15. Voltammetric behavior of uric acid on carbon paste electrode modified with salmon sperm dsDNA and its application as label-free electrochemical sensor. Mohamadi M; Mostafavi A; Torkzadeh-Mahani M Biosens Bioelectron; 2014 Apr; 54():211-6. PubMed ID: 24287406 [TBL] [Abstract][Full Text] [Related]
16. Nanocomposites of poly(l-methionine), carbon nanotube-graphene complexes and Au nanoparticles on screen printed carbon electrodes for electrochemical analyses of dopamine and uric acid in human urine solutions. Si Y; Park YE; Lee JE; Lee HJ Analyst; 2020 May; 145(10):3656-3665. PubMed ID: 32215393 [TBL] [Abstract][Full Text] [Related]
17. Supramolecular immobilization of xanthine oxidase on electropolymerized matrix of functionalized hybrid gold nanoparticles/single-walled carbon nanotubes for the preparation of electrochemical biosensors. Villalonga R; Díez P; Eguílaz M; Martínez P; Pingarrón JM ACS Appl Mater Interfaces; 2012 Aug; 4(8):4312-9. PubMed ID: 22801986 [TBL] [Abstract][Full Text] [Related]
18. An amperometric biosensor for fish freshness detection from xanthine oxidase immobilized in polypyrrole-polyvinylsulphonate film. Dolmaci N; Çete S; Arslan F; Yaşar A Artif Cells Blood Substit Immobil Biotechnol; 2012 Aug; 40(4):275-9. PubMed ID: 22248304 [TBL] [Abstract][Full Text] [Related]
19. A serotonin voltammetric biosensor composed of carbon nanocomposites and DNA aptamer. Li J; Si Y; Park YE; Choi JS; Jung SM; Lee JE; Lee HJ Mikrochim Acta; 2021 Apr; 188(4):146. PubMed ID: 33792757 [TBL] [Abstract][Full Text] [Related]
20. The comparison of different gold nanoparticles/graphene nanosheets hybrid nanocomposites in electrochemical performance and the construction of a sensitive uric acid electrochemical sensor with novel hybrid nanocomposites. Xue Y; Zhao H; Wu Z; Li X; He Y; Yuan Z Biosens Bioelectron; 2011 Nov; 29(1):102-8. PubMed ID: 21871789 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]