These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 30223199)

  • 1. Macroporous monoliths with pH-induced switchable wettability for recyclable oil separation and recovery.
    Guo Z; Gu H; Chen Q; He Z; Xu W; Zhang J; Liu Y; Xiong L; Zheng L; Feng Y
    J Colloid Interface Sci; 2019 Jan; 534():183-194. PubMed ID: 30223199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smart Fiber Membrane for pH-Induced Oil/Water Separation.
    Li JJ; Zhou YN; Luo ZH
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19643-50. PubMed ID: 26293145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature.
    Wang B; Liang W; Guo Z; Liu W
    Chem Soc Rev; 2015 Jan; 44(1):336-61. PubMed ID: 25311259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smart candle soot coated membranes for on-demand immiscible oil/water mixture and emulsion switchable separation.
    Li J; Zhao Z; Li D; Tian H; Zha F; Feng H; Guo L
    Nanoscale; 2017 Sep; 9(36):13610-13617. PubMed ID: 28876001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Porous Poly(high internal phase emulsion) Membranes with "Open-Cell" Structure and CO
    Lei L; Zhang Q; Shi S; Zhu S
    Langmuir; 2017 Oct; 33(43):11936-11944. PubMed ID: 28968129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smart Amphiphilic Random Copolymer-Coated Sponge with pH-Switchable Wettability for On-Demand Oil/Water Separation.
    Jin L; Wang Y; Xue T; Xie J; Xu Y; Yao Y; Li X
    Langmuir; 2019 Nov; 35(45):14473-14480. PubMed ID: 31621327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO
    Li Y; Zhu L; Grishkewich N; Tam KC; Yuan J; Mao Z; Sui X
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9367-9373. PubMed ID: 30735345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanofibrous, Emulsion-Templated Syndiotactic Polystyrenes with Superhydrophobicity for Oil Spill Cleanup.
    Gui H; Zhang T; Guo Q
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):36063-36072. PubMed ID: 31549499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel TiO
    Ren J; Tao F; Liu L; Wang X; Cui Y
    Carbohydr Polym; 2020 Mar; 232():115807. PubMed ID: 31952606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulosic sponges with pH responsive wettability for efficient oil-water separation.
    Li L; Rong L; Xu Z; Wang B; Feng X; Mao Z; Xu H; Yuan J; Liu S; Sui X
    Carbohydr Polym; 2020 Jun; 237():116133. PubMed ID: 32241408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Covalent Silica Nanoparticles for pH-Switchable Pickering Emulsions.
    Ren G; Wang M; Wang L; Wang Z; Chen Q; Xu Z; Sun D
    Langmuir; 2018 May; 34(20):5798-5806. PubMed ID: 29709197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ and Ex Situ pH-Responsive Coatings with Switchable Wettability for Controllable Oil/Water Separation.
    Dang Z; Liu L; Li Y; Xiang Y; Guo G
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31281-31288. PubMed ID: 27808490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-responsive polyacrylonitrile-based electrospun membrane for controllable oil-water separation.
    Dou YL; Yue X; Lv CJ; Yasin A; Hao B; Su Y; Ma PC
    J Hazard Mater; 2022 Sep; 438():129565. PubMed ID: 35999750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermo-Driven Controllable Emulsion Separation by a Polymer-Decorated Membrane with Switchable Wettability.
    Zhang W; Liu N; Zhang Q; Qu R; Liu Y; Li X; Wei Y; Feng L; Jiang L
    Angew Chem Int Ed Engl; 2018 May; 57(20):5740-5745. PubMed ID: 29578276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient and simple strategy for fabricating a polypyrrole decorated ceramic-polymeric porous membrane for purification of a variety of oily wastewater streams.
    Baig U; Waheed A
    Environ Res; 2023 Feb; 219():114959. PubMed ID: 36535398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scalable and switchable CO
    Wang Y; Yang S; Zhang J; Chen Z; Zhu B; Li J; Liang S; Bai Y; Xu J; Rao D; Dong L; Zhang C; Yang X
    Nat Commun; 2023 Feb; 14(1):1108. PubMed ID: 36849553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Switchable Wettability Surface with Chemical Stability and Antifouling Properties for Controllable Oil-Water Separation.
    Gao H; Liu Y; Wang G; Li S; Han Z; Ren L
    Langmuir; 2019 Apr; 35(13):4498-4508. PubMed ID: 30845805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a Janus F-TiO
    Yang C; Han N; Han C; Wang M; Zhang W; Wang W; Zhang Z; Li W; Zhang X
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22408-22418. PubMed ID: 31149793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Eco-Friendly Manner to Prepare Superwetting Melamine Sponges with Switchable Wettability for the Separation of Oil/Water Mixtures and Emulsions.
    Belachew GB; Hu CC; Chang YY; Wang CF; Hung WS; Chen JK; Lai JY
    Polymers (Basel); 2024 Mar; 16(5):. PubMed ID: 38475376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of Hierarchical Macroporous ZIF-8 Monoliths Using High Internal Phase Pickering Emulsion Templates.
    Sun Y; Zhu Y; Zhang S; Binks BP
    Langmuir; 2021 Jul; 37(28):8435-8444. PubMed ID: 34236203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.