BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 30223585)

  • 1. Unexpected Resistance to Base-Catalyzed Hydrolysis of Nitrogen Pyramidal Amides Based on the 7-Azabicyclic[2.2.1]heptane Scaffold.
    Ocampo Gutiérrez de Velasco DA; Su A; Zhai L; Kinoshita S; Otani Y; Ohwada T
    Molecules; 2018 Sep; 23(9):. PubMed ID: 30223585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Nitrogen pyramidal amides and related compounds].
    Ohwada T
    Yakugaku Zasshi; 2001 Jan; 121(1):65-77. PubMed ID: 11201163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unusually high pyramidal geometry of the bicyclic amide nitrogen in a complex 7-azabicyclo[2.2.1]heptane derivative: Theoretical analysis using a bottom-up strategy.
    Alemán C; Jiménez AI; Cativiela C; Pérez JJ; Casanovas J
    J Phys Chem B; 2005 Jun; 109(23):11836-41. PubMed ID: 16852453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An evaluation of amide group planarity in 7-azabicyclo[2.2.1]heptane amides. Low amide bond rotation barrier in solution.
    Otani Y; Nagae O; Naruse Y; Inagaki S; Ohno M; Yamaguchi K; Yamamoto G; Uchiyama M; Ohwada T
    J Am Chem Soc; 2003 Dec; 125(49):15191-9. PubMed ID: 14653754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water-stable helical structure of tertiary amides of bicyclic β-amino acid bearing 7-azabicyclo[2.2.1]heptane. Full control of amide cis-trans equilibrium by bridgehead substitution.
    Hosoya M; Otani Y; Kawahata M; Yamaguchi K; Ohwada T
    J Am Chem Soc; 2010 Oct; 132(42):14780-9. PubMed ID: 20882981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical studies of the transition-state structures and free energy barriers for base-catalyzed hydrolysis of amides.
    Xiong Y; Zhan CG
    J Phys Chem A; 2006 Nov; 110(46):12644-52. PubMed ID: 17107116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acid-catalyzed reactions of twisted amides in water solution: competition between hydration and hydrolysis.
    Wang B; Cao Z
    Chemistry; 2011 Oct; 17(42):11919-29. PubMed ID: 21901771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amide nitrogen pyramidalization changes lactam amide spinning.
    Otani Y; Liu X; Ohno H; Wang S; Zhai L; Su A; Kawahata M; Yamaguchi K; Ohwada T
    Nat Commun; 2019 Jan; 10(1):461. PubMed ID: 30692534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel synthesis of an amide library based on the 6,8-dioxa-3-azabicyclo[3.2.1]octane scaffold by direct aminolysis of methyl esters.
    Machetti F; Bucelli I; Indiani G; Kappe CO; Guarna A
    J Comb Chem; 2007; 9(3):454-61. PubMed ID: 17411098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Medium-bridged lactams: a new class of non-planar amides.
    Szostak M; Aubé J
    Org Biomol Chem; 2011 Jan; 9(1):27-35. PubMed ID: 21069232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amide hydrolysis reactivity of a N4O-ligated zinc complex: comparison of kinetic and themodynamic parameters with those of the corresponding amide methanolysis reaction.
    Szajna-Fuller E; Ingle GK; Watkins RW; Arif AM; Berreau LM
    Inorg Chem; 2007 Apr; 46(7):2353-5. PubMed ID: 17330970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction mechanism of the acidic hydrolysis of highly twisted amides: Rate acceleration caused by the twist of the amide bond.
    Mujika JI; Formoso E; Mercero JM; Lopez X
    J Phys Chem B; 2006 Aug; 110(30):15000-11. PubMed ID: 16869615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water-promoted hydrolysis of a highly twisted amide: rate acceleration caused by the twist of the amide bond.
    Mujika JI; Mercero JM; Lopez X
    J Am Chem Soc; 2005 Mar; 127(12):4445-53. PubMed ID: 15783227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of internal hydrogen bonds between amide groups: protonation of alicyclic diamides.
    Witt M; Kreft D; Grützmacher HF
    Eur J Mass Spectrom (Chichester); 2003; 9(2):81-95. PubMed ID: 12748392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporation of Ahc into model dipeptides as an inducer of a beta-turn with a distorted amide bond. Conformational analysis.
    Avenoza A; Busto JH; Peregrina JM; Rodríguez F
    J Org Chem; 2002 Jun; 67(12):4241-9. PubMed ID: 12054960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enantioselective hydroarylation of bridged [3.2.1] heterocycles: an efficient entry into the homoepibatidine skeleton.
    Brawn RA; Guimarães CR; McClure KF; Liras S
    Org Lett; 2013 Jul; 15(13):3424-7. PubMed ID: 23790034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron-catalyzed N-alkylation of azoles via cleavage of an sp3 C-H bond adjacent to a nitrogen atom.
    Xia Q; Chen W
    J Org Chem; 2012 Oct; 77(20):9366-73. PubMed ID: 23025235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural features of aliphatic N-nitrosamines of 7-azabicyclo[2.2.1]heptanes that facilitate N-NO bond cleavage.
    Ohwada T; Miura M; Tanaka H; Sakamoto S; Yamaguchi K; Ikeda H; Inagaki S
    J Am Chem Soc; 2001 Oct; 123(42):10164-72. PubMed ID: 11603965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A self-assembled coordination cage enhances the reactivity of confined amides
    Tamura H; Takezawa H; Fujita M; Ishikita H
    Phys Chem Chem Phys; 2022 Sep; 24(35):21367-21371. PubMed ID: 36043636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of enamides via palladium(II)-catalyzed vinyl transfer from vinyl ethers to nitrogen nucleophiles.
    Brice JL; Meerdink JE; Stahl SS
    Org Lett; 2004 May; 6(11):1845-8. PubMed ID: 15151429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.