These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 30223605)
1. Combination of Sensory, Chromatographic, and Chemometrics Analysis of Volatile Organic Compounds for the Discrimination of Authentic and Unauthentic Harumanis Mangoes. Zakaria SR; Saim N; Osman R; Abdul Haiyee Z; Juahir H Molecules; 2018 Sep; 23(9):. PubMed ID: 30223605 [TBL] [Abstract][Full Text] [Related]
2. Volatile profiling of fruits of 17 mango cultivars by HS-SPME-GC/MS combined with principal component analysis. Shimizu K; Matsukawa T; Kanematsu R; Itoh K; Kanzaki S; Shigeoka S; Kajiyama S Biosci Biotechnol Biochem; 2021 Jul; 85(8):1789-1797. PubMed ID: 34057172 [TBL] [Abstract][Full Text] [Related]
3. The impact of ventilation during postharvest ripening on the development of flavour compounds and sensory quality of mangoes (Mangifera indica L.) cv. Kent. Lehner TB; Siegmund B Food Chem; 2020 Aug; 320():126608. PubMed ID: 32229396 [TBL] [Abstract][Full Text] [Related]
4. Volatile Compounds Content, Physicochemical Parameters, and Antioxidant Activity of Beers with Addition of Mango Fruit ( Gasiński A; Kawa-Rygielska J; Szumny A; Czubaszek A; Gąsior J; Pietrzak W Molecules; 2020 Jul; 25(13):. PubMed ID: 32630803 [TBL] [Abstract][Full Text] [Related]
5. Development of a Headspace Solid-Phase Microextraction Gas Chromatography-Mass Spectrometry Method to Study Volatile Organic Compounds (VOCs) Emitted by Lavender Roots. Stierlin É; Nicolè F; Fernandez X; Michel T Chem Biodivers; 2019 Aug; 16(8):e1900280. PubMed ID: 31211502 [TBL] [Abstract][Full Text] [Related]
6. Screening of volatile decay markers of minced pork by headspace-solid phase microextraction-gas chromatography-mass spectrometry and chemometrics. Song X; Canellas E; Nerin C Food Chem; 2021 Apr; 342():128341. PubMed ID: 33077278 [TBL] [Abstract][Full Text] [Related]
7. Fruit quality parameters and volatile compounds from 'Palmer' mangoes with internal breakdown. Campos Alencar Oldoni F; Florencio C; Brait Bertazzo G; Aparecida Grizotto P; Bogusz Junior S; Lajarim Carneiro R; Alberto Colnago L; David Ferreira M Food Chem; 2022 Sep; 388():132902. PubMed ID: 35447579 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the volatile components in green tea by IRAE-HS-SPME/GC-MS combined with multivariate analysis. Yang YQ; Yin HX; Yuan HB; Jiang YW; Dong CW; Deng YL PLoS One; 2018; 13(3):e0193393. PubMed ID: 29494626 [TBL] [Abstract][Full Text] [Related]
9. Study on the Discrimination between Citri Reticulatae Pericarpium Varieties Based on HS-SPME-GC-MS Combined with Multivariate Statistical Analyses. Zheng Y; Zeng X; Peng W; Wu Z; Su W Molecules; 2018 May; 23(5):. PubMed ID: 29786662 [TBL] [Abstract][Full Text] [Related]
10. Discrimination of Chinese vinegars based on headspace solid-phase microextraction-gas chromatography mass spectrometry of volatile compounds and multivariate analysis. Xiao Z; Dai S; Niu Y; Yu H; Zhu J; Tian H; Gu Y J Food Sci; 2011 Oct; 76(8):C1125-35. PubMed ID: 22417575 [TBL] [Abstract][Full Text] [Related]
11. Aromatic Characterization of Mangoes ( Liu H; An K; Su S; Yu Y; Wu J; Xiao G; Xu Y Foods; 2020 Jan; 9(1):. PubMed ID: 31936596 [TBL] [Abstract][Full Text] [Related]
12. Analysis of the Volatile Profile of Core Chinese Mango Germplasm by Headspace Solid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry. Ma XW; Su MQ; Wu HX; Zhou YG; Wang SB Molecules; 2018 Jun; 23(6):. PubMed ID: 29921765 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of volatile metabolites as markers in Lycopersicon esculentum L. cultivars discrimination by multivariate analysis of headspace solid phase microextraction and mass spectrometry data. Figueira J; Câmara H; Pereira J; Câmara JS Food Chem; 2014 Feb; 145():653-63. PubMed ID: 24128528 [TBL] [Abstract][Full Text] [Related]
14. Relationship between Sensory Attributes and Chemical Composition of Different Mango Cultivars. Sung J; Suh JH; Chambers AH; Crane J; Wang Y J Agric Food Chem; 2019 May; 67(18):5177-5188. PubMed ID: 30977646 [TBL] [Abstract][Full Text] [Related]
15. Comparative analysis of Fenghuang Dancong, Tieguanyin, and Dahongpao teas using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry and chemometric methods. Li Z PLoS One; 2022; 17(10):e0276044. PubMed ID: 36228035 [TBL] [Abstract][Full Text] [Related]
16. Exploring the volatile metabolome of conventional and organic walnut oils by solid-phase microextraction and analysis by GC-MS combined with chemometrics. Kalogiouri NP; Manousi N; Rosenberg E; Zachariadis GA; Paraskevopoulou A; Samanidou V Food Chem; 2021 Nov; 363():130331. PubMed ID: 34139518 [TBL] [Abstract][Full Text] [Related]
17. Discrimination of geographical origin of oranges (Citrus sinensis L. Osbeck) by mass spectrometry-based electronic nose and characterization of volatile compounds. Centonze V; Lippolis V; Cervellieri S; Damascelli A; Casiello G; Pascale M; Logrieco AF; Longobardi F Food Chem; 2019 Mar; 277():25-30. PubMed ID: 30502142 [TBL] [Abstract][Full Text] [Related]
18. In-Line Sorting of Harumanis Mango Based on External Quality Using Visible Imaging. Ibrahim MF; Ahmad Sa'ad FS; Zakaria A; Md Shakaff AY Sensors (Basel); 2016 Oct; 16(11):. PubMed ID: 27801799 [TBL] [Abstract][Full Text] [Related]
19. Discrimination of oolong tea (Camellia sinensis) varieties based on feature extraction and selection from aromatic profiles analysed by HS-SPME/GC-MS. Lin J; Zhang P; Pan Z; Xu H; Luo Y; Wang X Food Chem; 2013 Nov; 141(1):259-65. PubMed ID: 23768356 [TBL] [Abstract][Full Text] [Related]
20. Discrimination of cherry wines based on their sensory properties and aromatic fingerprinting using HS-SPME-GC-MS and multivariate analysis. Xiao Z; Liu S; Gu Y; Xu N; Shang Y; Zhu J J Food Sci; 2014 Mar; 79(3):C284-94. PubMed ID: 24611827 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]