These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 30223906)
21. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. Wilhelm RC; Singh R; Eltis LD; Mohn WW ISME J; 2019 Feb; 13(2):413-429. PubMed ID: 30258172 [TBL] [Abstract][Full Text] [Related]
22. Construction of Effective Minimal Active Microbial Consortia for Lignocellulose Degradation. Puentes-Téllez PE; Falcao Salles J Microb Ecol; 2018 Aug; 76(2):419-429. PubMed ID: 29392382 [TBL] [Abstract][Full Text] [Related]
23. A holobiont approach towards polysaccharide degradation by the highly compartmentalised gut system of the soil-feeding higher termite Labiotermes labralis. Marynowska M; Sillam-Dussès D; Untereiner B; Klimek D; Goux X; Gawron P; Roisin Y; Delfosse P; Calusinska M BMC Genomics; 2023 Mar; 24(1):115. PubMed ID: 36922761 [TBL] [Abstract][Full Text] [Related]
25. Ninety-nine de novo assembled genomes from the moose (Alces alces) rumen microbiome provide new insights into microbial plant biomass degradation. Svartström O; Alneberg J; Terrapon N; Lombard V; de Bruijn I; Malmsten J; Dalin AM; El Muller E; Shah P; Wilmes P; Henrissat B; Aspeborg H; Andersson AF ISME J; 2017 Nov; 11(11):2538-2551. PubMed ID: 28731473 [TBL] [Abstract][Full Text] [Related]
26. Metagenomic Insight into Lignocellulose Degradation of the Thermophilic Microbial Consortium TMC7. Wang Y; Wang C; Chen Y; Chen B; Guo P; Cui Z J Microbiol Biotechnol; 2021 Aug; 31(8):1123-1133. PubMed ID: 34226407 [TBL] [Abstract][Full Text] [Related]
27. Metagenomic Analysis of the Gut Microbiome of the Common Black Slug Joynson R; Pritchard L; Osemwekha E; Ferry N Front Microbiol; 2017; 8():2181. PubMed ID: 29167663 [TBL] [Abstract][Full Text] [Related]
28. Physiological properties of the gut lumen of terrestrial isopods (Isopoda: Oniscidea): adaptive to digesting lignocellulose? Zimmer M; Brune A J Comp Physiol B; 2005 May; 175(4):275-83. PubMed ID: 15900508 [TBL] [Abstract][Full Text] [Related]
29. Nutrition in terrestrial isopods (Isopoda: Oniscidea): an evolutionary-ecological approach. Zimmer M Biol Rev Camb Philos Soc; 2002 Nov; 77(4):455-93. PubMed ID: 12475050 [TBL] [Abstract][Full Text] [Related]
30. Multipartite symbioses in fungus-growing termites (Blattodea: Termitidae, Macrotermitinae) for the degradation of lignocellulose. Ahmad F; Yang GY; Liang SY; Zhou QH; Gaal HA; Mo JC Insect Sci; 2021 Dec; 28(6):1512-1529. PubMed ID: 33236502 [TBL] [Abstract][Full Text] [Related]
31. [Screening and genomic analysis of a lignocellulose degrading bacterium]. Bao W; Jiang J; Zhou Y; Wu Y; Leung FC Wei Sheng Wu Xue Bao; 2016 May; 56(5):765-77. PubMed ID: 29727138 [TBL] [Abstract][Full Text] [Related]
32. Mechanistic strategies of microbial communities regulating lignocellulose deconstruction in a UK salt marsh. Leadbeater DR; Oates NC; Bennett JP; Li Y; Dowle AA; Taylor JD; Alponti JS; Setchfield AT; Alessi AM; Helgason T; McQueen-Mason SJ; Bruce NC Microbiome; 2021 Feb; 9(1):48. PubMed ID: 33597033 [TBL] [Abstract][Full Text] [Related]
33. Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Ni J; Tokuda G Biotechnol Adv; 2013 Nov; 31(6):838-50. PubMed ID: 23623853 [TBL] [Abstract][Full Text] [Related]
34. Quantification of symbiotic contributions to lower termite lignocellulose digestion using antimicrobial treatments. Peterson BF; Stewart HL; Scharf ME Insect Biochem Mol Biol; 2015 Apr; 59():80-8. PubMed ID: 25724277 [TBL] [Abstract][Full Text] [Related]
35. Characterization of novel lignocellulose-degrading enzymes from the porcupine microbiome using synthetic metagenomics. Thornbury M; Sicheri J; Slaine P; Getz LJ; Finlayson-Trick E; Cook J; Guinard C; Boudreau N; Jakeman D; Rohde J; McCormick C PLoS One; 2019; 14(1):e0209221. PubMed ID: 30601862 [TBL] [Abstract][Full Text] [Related]
36. Straw from Different Crop Species Recruits Different Communities of Lignocellulose-Degrading Microorganisms in Black Soil. Chang C; Guo Y; Tang K; Hu Y; Xu W; Chen W; McLaughlin N; Wang Z Microorganisms; 2024 May; 12(5):. PubMed ID: 38792768 [TBL] [Abstract][Full Text] [Related]
37. Spatial Distribution and Diverse Metabolic Functions of Lignocellulose-Degrading Uncultured Bacteria as Revealed by Genome-Centric Metagenomics. Kougias PG; Campanaro S; Treu L; Tsapekos P; Armani A; Angelidaki I Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 30006398 [TBL] [Abstract][Full Text] [Related]
38. Metagenomic SMRT Sequencing-Based Exploration of Novel Lignocellulose-Degrading Capability in Wood Detritus from Torreya nucifera in Bija Forest on Jeju Island. Oh HN; Lee TK; Park JW; No JH; Kim D; Sul WJ J Microbiol Biotechnol; 2017 Sep; 27(9):1670-1680. PubMed ID: 28633514 [TBL] [Abstract][Full Text] [Related]
39. Comparative metagenomic analysis of microcosm structures and lignocellulolytic enzyme systems of symbiotic biomass-degrading consortia. Wongwilaiwalin S; Laothanachareon T; Mhuantong W; Tangphatsornruang S; Eurwilaichitr L; Igarashi Y; Champreda V Appl Microbiol Biotechnol; 2013 Oct; 97(20):8941-54. PubMed ID: 23381385 [TBL] [Abstract][Full Text] [Related]
40. Metagenomic Analysis of the Fecal Microbiomes of Wild Asian Elephants Reveals Microflora and Enzymes that Mainly Digest Hemicellulose. Zhang C; Xu B; Lu T; Huang Z J Microbiol Biotechnol; 2019 Aug; 29(8):1255-1265. PubMed ID: 31337187 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]