These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 30223906)
41. Host tissues as microhabitats for Wolbachia and quantitative insights into the bacterial community in terrestrial isopods. Dittmer J; Beltran-Bech S; Lesobre J; Raimond M; Johnson M; Bouchon D Mol Ecol; 2014 May; 23(10):2619-35. PubMed ID: 24750488 [TBL] [Abstract][Full Text] [Related]
42. Characterisation of the enzyme transport path between shipworms and their bacterial symbionts. Pesante G; Sabbadin F; Elias L; Steele-King C; Shipway JR; Dowle AA; Li Y; Busse-Wicher M; Dupree P; Besser K; Cragg SM; Bruce NC; McQueen-Mason SJ BMC Biol; 2021 Nov; 19(1):233. PubMed ID: 34724941 [TBL] [Abstract][Full Text] [Related]
43. Microenvironmental heterogeneity of gut compartments drives bacterial community structure in wood- and humus-feeding higher termites. Mikaelyan A; Meuser K; Brune A FEMS Microbiol Ecol; 2017 Jan; 93(1):. PubMed ID: 27798065 [TBL] [Abstract][Full Text] [Related]
44. Proteomic Characterization of Lignocellulolytic Enzymes Secreted by the Insect-Associated Fungus Hori C; Song R; Matsumoto K; Matsumoto R; Minkoff BB; Oita S; Hara H; Takasuka TE Appl Environ Microbiol; 2020 Apr; 86(8):. PubMed ID: 32060026 [TBL] [Abstract][Full Text] [Related]
45. Carbohydrate active enzyme domains from extreme thermophiles: components of a modular toolbox for lignocellulose degradation. Botha J; Mizrachi E; Myburg AA; Cowan DA Extremophiles; 2018 Jan; 22(1):1-12. PubMed ID: 29110088 [TBL] [Abstract][Full Text] [Related]
46. Potential of semiarid soil from Caatinga biome as a novel source for mining lignocellulose-degrading enzymes. Lacerda Júnior GV; Noronha MF; de Sousa ST; Cabral L; Domingos DF; Sáber ML; de Melo IS; Oliveira VM FEMS Microbiol Ecol; 2017 Feb; 93(2):. PubMed ID: 27986827 [TBL] [Abstract][Full Text] [Related]
47. The Phylogenomic Diversity of Herbivore-Associated Neumann AP; Suen G mSphere; 2018 Dec; 3(6):. PubMed ID: 30541780 [TBL] [Abstract][Full Text] [Related]
49. Integrative omics analysis of the termite gut system adaptation to Miscanthus diet identifies lignocellulose degradation enzymes. Calusinska M; Marynowska M; Bertucci M; Untereiner B; Klimek D; Goux X; Sillam-Dussès D; Gawron P; Halder R; Wilmes P; Ferrer P; Gerin P; Roisin Y; Delfosse P Commun Biol; 2020 Jun; 3(1):275. PubMed ID: 32483294 [TBL] [Abstract][Full Text] [Related]
50. "Endomicrobia": cytoplasmic symbionts of termite gut protozoa form a separate phylum of prokaryotes. Stingl U; Radek R; Yang H; Brune A Appl Environ Microbiol; 2005 Mar; 71(3):1473-9. PubMed ID: 15746350 [TBL] [Abstract][Full Text] [Related]
51. In-situ generation of H Li K; Wang Y; Li X; Huang Y; Niu Q; Meng Q; Yang H; Li Q Chemosphere; 2022 Sep; 302():134908. PubMed ID: 35551932 [TBL] [Abstract][Full Text] [Related]
52. Host-Specific Diversity of Culturable Bacteria in the Gut Systems of Fungus-Growing Termites and Their Potential Functions towards Lignocellulose Bioconversion. Xie R; Dong C; Wang S; Danso B; Dar MA; Pandit RS; Pawar KD; Geng A; Zhu D; Li X; Xu Q; Sun J Insects; 2023 Apr; 14(4):. PubMed ID: 37103218 [TBL] [Abstract][Full Text] [Related]
53. Upgrade from aerated static pile to agitated bed systems promotes lignocellulose degradation in large-scale composting through enhanced microbial functional diversity. Yu H; Xiao H; Deng H; Frew A; Hossain MA; Tan W; Xi B J Environ Sci (China); 2024 Oct; 144():55-66. PubMed ID: 38802238 [TBL] [Abstract][Full Text] [Related]
54. Identification of Genes Conferring Tolerance to Lignocellulose-Derived Inhibitors by Functional Selections in Soil Metagenomes. Forsberg KJ; Patel S; Witt E; Wang B; Ellison TD; Dantas G Appl Environ Microbiol; 2016 Jan; 82(2):528-37. PubMed ID: 26546427 [TBL] [Abstract][Full Text] [Related]
55. Midgut transcriptome profiling of Anoplophora glabripennis, a lignocellulose degrading cerambycid beetle. Scully ED; Hoover K; Carlson JE; Tien M; Geib SM BMC Genomics; 2013 Dec; 14(1):850. PubMed ID: 24304644 [TBL] [Abstract][Full Text] [Related]
56. Individual level microbial communities in the digestive system of the freshwater isopod Asellus aquaticus: Complex, robust and prospective. Liao A; Hartikainen H; Buser CC Environ Microbiol Rep; 2023 Jun; 15(3):188-196. PubMed ID: 36779263 [TBL] [Abstract][Full Text] [Related]
57. Isolation and characterization of microsatellite loci for the isopod crustacean Armadillidium vulgare and transferability in terrestrial isopods. Giraud I; Valette V; Bech N; Grandjean F; Cordaux R PLoS One; 2013; 8(10):e76639. PubMed ID: 24098543 [TBL] [Abstract][Full Text] [Related]
58. Lignocellulose-Degrading Microbial Communities in Landfill Sites Represent a Repository of Unexplored Biomass-Degrading Diversity. Ransom-Jones E; McCarthy AJ; Haldenby S; Doonan J; McDonald JE mSphere; 2017; 2(4):. PubMed ID: 28776044 [TBL] [Abstract][Full Text] [Related]
59. De novo transcriptome assembly of the bamboo snout beetle Luo C; Li Y; Liao H; Yang Y Biotechnol Biofuels; 2018; 11():292. PubMed ID: 30386429 [TBL] [Abstract][Full Text] [Related]
60. [Degradation of lignocellulose in the corn straw by Bacillus amyloliquefaciens MN-8]. Li HY; Li SN; Wang SX; Wang Q; Xue YY; Zhu BC Ying Yong Sheng Tai Xue Bao; 2015 May; 26(5):1404-10. PubMed ID: 26571658 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]