BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 30224085)

  • 21. Oxygen, carbon, and nutrient exchanges at the sediment-water interface in the Mar Piccolo of Taranto (Ionian Sea, southern Italy).
    De Vittor C; Relitti F; Kralj M; Covelli S; Emili A
    Environ Sci Pollut Res Int; 2016 Jul; 23(13):12566-81. PubMed ID: 26154044
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of bioturbation by tubificid worms on biogeochemical processes, bacterial community structure and diversity in heterotrophic wetland sediments.
    Cariou M; Francois CM; Voisin J; Pigneret M; Hervant F; Volatier L; Mermillod-Blondin F
    Sci Total Environ; 2021 Nov; 795():148842. PubMed ID: 34328914
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increasing densities of an invasive polychaete enhance bioturbation with variable effects on solute fluxes.
    Kauppi L; Bernard G; Bastrop R; Norkko A; Norkko J
    Sci Rep; 2018 May; 8(1):7619. PubMed ID: 29769583
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of an invasive polychaete on benthic phosphorus cycling at sea basin scale: An ecosystem disservice.
    Sandman AN; Näslund J; Gren IM; Norling K
    Ambio; 2018 Dec; 47(8):884-892. PubMed ID: 29730794
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of shelter and enrichment on the ecology and nutrient cycling of microbial communities of subtidal carbonate sediments.
    Forehead HI; Kendrick GA; Thompson PA
    FEMS Microbiol Ecol; 2012 Apr; 80(1):64-76. PubMed ID: 22133029
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Macroinvertebrates as engineers for bioturbation in freshwater ecosystem.
    Chakraborty A; Saha GK; Aditya G
    Environ Sci Pollut Res Int; 2022 Sep; 29(43):64447-64468. PubMed ID: 35864394
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional diversity of macrozoobenthos under adverse oxygen conditions in the southern Baltic Sea.
    Kendzierska H; Janas U
    Sci Rep; 2024 Apr; 14(1):8946. PubMed ID: 38637621
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alkalinity production in intertidal sands intensified by lugworm bioirrigation.
    Rao AM; Malkin SY; Montserrat F; Meysman FJ
    Estuar Coast Shelf Sci; 2014 Jul; 148():36-47. PubMed ID: 25431515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relationship between heavy metals and dissolved organic matter released from sediment by bioturbation/bioirrigation.
    He Y; Men B; Yang X; Li Y; Xu H; Wang D
    J Environ Sci (China); 2019 Jan; 75():216-223. PubMed ID: 30473287
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Consequences of increasing hypoxic disturbance on benthic communities and ecosystem functioning.
    Villnäs A; Norkko J; Lukkari K; Hewitt J; Norkko A
    PLoS One; 2012; 7(10):e44920. PubMed ID: 23091592
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biogenic disturbance determines invasion success in a subtidal soft-sediment system.
    Lohrer AM; Chiaroni LD; Hewitt JE; Thrush SF
    Ecology; 2008 May; 89(5):1299-307. PubMed ID: 18543623
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contrasted impact of two macrofaunal species (Hediste diversicolor and Scrobicularia plana) on microphytobenthos spatial distribution and photosynthetic activity at microscale.
    Morelle J; Maire O; Richard A; Slimani A; Orvain F
    Mar Environ Res; 2021 Jan; 163():105228. PubMed ID: 33302156
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sediment-related distribution patterns of nematodes and macrofauna: two sides of the benthic coin?
    Vanaverbeke J; Merckx B; Degraer S; Vincx M
    Mar Environ Res; 2011 Feb; 71(1):31-40. PubMed ID: 20974491
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Benthic ecosystem functioning under climate change: modelling the bioturbation potential for benthic key species in the southern North Sea.
    Weinert M; Kröncke I; Meyer J; Mathis M; Pohlmann T; Reiss H
    PeerJ; 2022; 10():e14105. PubMed ID: 36317120
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impacts of bottom trawling on benthic biogeochemistry in muddy sediments: Removal of surface sediment using an experimental field study.
    Morys C; Brüchert V; Bradshaw C
    Mar Environ Res; 2021 Jul; 169():105384. PubMed ID: 34233256
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioturbation: impact on the marine nitrogen cycle.
    Laverock B; Gilbert JA; Tait K; Osborn AM; Widdicombe S
    Biochem Soc Trans; 2011 Jan; 39(1):315-20. PubMed ID: 21265795
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.
    Katagi T
    Rev Environ Contam Toxicol; 2010; 204():1-132. PubMed ID: 19957234
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of shallow-water hydrothermal venting on biological communities of coastal marine ecosystems of the western Pacific.
    Tarasov VG
    Adv Mar Biol; 2006; 50():267-421. PubMed ID: 16782453
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Organism-sediment interactions govern post-hypoxia recovery of ecosystem functioning.
    Van Colen C; Rossi F; Montserrat F; Andersson MG; Gribsholt B; Herman PM; Degraer S; Vincx M; Ysebaert T; Middelburg JJ
    PLoS One; 2012; 7(11):e49795. PubMed ID: 23185440
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of uranium-contaminated sediments on the bioturbation activity of Chironomus riparius larvae (Insecta, Diptera) and Tubifex tubifex worms (Annelida, Tubificidae).
    Lagauzère S; Boyer P; Stora G; Bonzom JM
    Chemosphere; 2009 Jul; 76(3):324-34. PubMed ID: 19403158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.