These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 30224138)
1. Copper nanoclusters/polydopamine nanospheres based fluorescence aptasensor for protein kinase activity determination. Wang M; Wang S; Su D; Su X Anal Chim Acta; 2018 Dec; 1035():184-191. PubMed ID: 30224138 [TBL] [Abstract][Full Text] [Related]
2. DNA-hosted copper nanoclusters/graphene oxide based fluorescent biosensor for protein kinase activity detection. Wang M; Lin Z; Liu Q; Jiang S; Liu H; Su X Anal Chim Acta; 2018 Jul; 1012():66-73. PubMed ID: 29475475 [TBL] [Abstract][Full Text] [Related]
3. Aptamer/Polydopamine Nanospheres Nanocomplex for in Situ Molecular Sensing in Living Cells. Qiang W; Hu H; Sun L; Li H; Xu D Anal Chem; 2015 Dec; 87(24):12190-6. PubMed ID: 26556471 [TBL] [Abstract][Full Text] [Related]
4. Sensitive fluorescence sensing of T4 polynucleotide kinase activity and inhibition based on DNA/polydopamine nanospheres platform. Cen Y; Deng WJ; Yu RQ; Chu X Talanta; 2018 Apr; 180():271-276. PubMed ID: 29332810 [TBL] [Abstract][Full Text] [Related]
5. A novel fluorescent biosensor for Adenosine Triphosphate detection based on the polydopamine nanospheres integrating with enzymatic recycling amplification. Ji X; Yi B; Xu Y; Zhao Y; Zhong H; Ding C Talanta; 2017 Jul; 169():8-12. PubMed ID: 28411826 [TBL] [Abstract][Full Text] [Related]
6. A fluorescent biosensing platform based on the polydopamine nanospheres intergrating with Exonuclease III-assisted target recycling amplification. Qiang W; Wang X; Li W; Chen X; Li H; Xu D Biosens Bioelectron; 2015 Sep; 71():143-149. PubMed ID: 25897884 [TBL] [Abstract][Full Text] [Related]
7. Size-Dependent Modulation of Polydopamine Nanospheres on Smart Nanoprobes for Detection of Pathogenic Bacteria at Single-Cell Level and Imaging-Guided Photothermal Bactericidal Activity. Ye Y; Zheng L; Wu T; Ding X; Chen F; Yuan Y; Fan GC; Shen Y ACS Appl Mater Interfaces; 2020 Aug; 12(31):35626-35637. PubMed ID: 32657116 [TBL] [Abstract][Full Text] [Related]
8. Cyclic-AMP-dependent protein kinase (PKA) activity assay based on FRET between cationic conjugated polymer and chromophore-labeled peptide. Tang S; Hu Y; Shen Q; Fang H; Li W; Nie Z; Yao S Analyst; 2014 Sep; 139(18):4710-6. PubMed ID: 25058387 [TBL] [Abstract][Full Text] [Related]
9. Polydopamine coated copper nanoclusters with aggregation-induced emission for fluorometric determination of phosphate ion and acid phosphatase activity. Du Q; Zhang X; Cao H; Huang Y Mikrochim Acta; 2020 May; 187(6):357. PubMed ID: 32468344 [TBL] [Abstract][Full Text] [Related]
10. Silver/copper bimetallic nanoclusters integrating with cryonase-assisted target recycling amplification detection of Salmonella typhimurium. Dou S; Liu M; Zhang F; Li B; Zhang Y; Li F; Guo Y; Sun X Mikrochim Acta; 2023 Sep; 190(10):403. PubMed ID: 37728643 [TBL] [Abstract][Full Text] [Related]
11. A facile aptasensor based on polydopamine nanospheres for high-sensitivity sensing of T-2 toxin. Guo T; Wang C; Zhou H; Zhang Y; Ma L; Wang S Anal Methods; 2021 Jun; 13(24):2654-2658. PubMed ID: 34036989 [TBL] [Abstract][Full Text] [Related]
12. Aptamer based electrochemical assay for protein kinase activity by coupling hybridization chain reaction. Jia LP; Zhao RN; Wang LJ; Ma RN; Zhang W; Shang L; Wang HS Biosens Bioelectron; 2018 Oct; 117():690-695. PubMed ID: 30014942 [TBL] [Abstract][Full Text] [Related]
13. Förster resonance-energy-transfer detection of 2,4,6-trinitrophenol using copper nanoclusters. Deng X; Huang X; Wu D Anal Bioanal Chem; 2015 Jun; 407(16):4607-13. PubMed ID: 25893800 [TBL] [Abstract][Full Text] [Related]
14. A polydopamine nanosphere based highly sensitive and selective aptamer cytosensor with enzyme amplification. Fan D; Wu C; Wang K; Gu X; Liu Y; Wang E Chem Commun (Camb); 2016 Jan; 52(2):406-9. PubMed ID: 26526224 [TBL] [Abstract][Full Text] [Related]
15. A novel aptasensor for the ultra-sensitive detection of adenosine triphosphate via aptamer/quantum dot based resonance energy transfer. Li Z; Wang Y; Liu Y; Zeng Y; Huang A; Peng N; Liu X; Liu J Analyst; 2013 Sep; 138(17):4732-6. PubMed ID: 23814782 [TBL] [Abstract][Full Text] [Related]
16. A fluorescence aptasensor based on two-dimensional sheet metal-organic frameworks for monitoring adenosine triphosphate. Hai XM; Li N; Wang K; Zhang ZQ; Zhang J; Dang FQ Anal Chim Acta; 2018 Jan; 998():60-66. PubMed ID: 29153087 [TBL] [Abstract][Full Text] [Related]
17. A novel "off-on" ratiometric fluorescent aptasensor for adenosine detection based on FRET between quantum dots and graphene oxide. Li P; Luo C; Chen X; Huang C Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jan; 305():123557. PubMed ID: 37866265 [TBL] [Abstract][Full Text] [Related]
18. Split aptamer based sensing platform for adenosine deaminase detection by fluorescence resonance energy transfer. Wang M; Chen J; Su D; Wang G; Su X Talanta; 2019 Jun; 198():1-7. PubMed ID: 30876536 [TBL] [Abstract][Full Text] [Related]
19. Novel single-stranded DNA binding protein-assisted fluorescence aptamer switch based on FRET for homogeneous detection of antibiotics. Wang Y; Gan N; Zhou Y; Li T; Cao Y; Chen Y Biosens Bioelectron; 2017 Jan; 87():508-513. PubMed ID: 27596250 [TBL] [Abstract][Full Text] [Related]
20. A design of red emission CDs-based aptasensor for sensitive detection of insulin via fluorescence resonance energy transfer. He Y; Cheng Y; Wen X Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 280():121497. PubMed ID: 35749972 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]