BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 30224138)

  • 1. Copper nanoclusters/polydopamine nanospheres based fluorescence aptasensor for protein kinase activity determination.
    Wang M; Wang S; Su D; Su X
    Anal Chim Acta; 2018 Dec; 1035():184-191. PubMed ID: 30224138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA-hosted copper nanoclusters/graphene oxide based fluorescent biosensor for protein kinase activity detection.
    Wang M; Lin Z; Liu Q; Jiang S; Liu H; Su X
    Anal Chim Acta; 2018 Jul; 1012():66-73. PubMed ID: 29475475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aptamer/Polydopamine Nanospheres Nanocomplex for in Situ Molecular Sensing in Living Cells.
    Qiang W; Hu H; Sun L; Li H; Xu D
    Anal Chem; 2015 Dec; 87(24):12190-6. PubMed ID: 26556471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive fluorescence sensing of T4 polynucleotide kinase activity and inhibition based on DNA/polydopamine nanospheres platform.
    Cen Y; Deng WJ; Yu RQ; Chu X
    Talanta; 2018 Apr; 180():271-276. PubMed ID: 29332810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel fluorescent biosensor for Adenosine Triphosphate detection based on the polydopamine nanospheres integrating with enzymatic recycling amplification.
    Ji X; Yi B; Xu Y; Zhao Y; Zhong H; Ding C
    Talanta; 2017 Jul; 169():8-12. PubMed ID: 28411826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fluorescent biosensing platform based on the polydopamine nanospheres intergrating with Exonuclease III-assisted target recycling amplification.
    Qiang W; Wang X; Li W; Chen X; Li H; Xu D
    Biosens Bioelectron; 2015 Sep; 71():143-149. PubMed ID: 25897884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size-Dependent Modulation of Polydopamine Nanospheres on Smart Nanoprobes for Detection of Pathogenic Bacteria at Single-Cell Level and Imaging-Guided Photothermal Bactericidal Activity.
    Ye Y; Zheng L; Wu T; Ding X; Chen F; Yuan Y; Fan GC; Shen Y
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35626-35637. PubMed ID: 32657116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclic-AMP-dependent protein kinase (PKA) activity assay based on FRET between cationic conjugated polymer and chromophore-labeled peptide.
    Tang S; Hu Y; Shen Q; Fang H; Li W; Nie Z; Yao S
    Analyst; 2014 Sep; 139(18):4710-6. PubMed ID: 25058387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polydopamine coated copper nanoclusters with aggregation-induced emission for fluorometric determination of phosphate ion and acid phosphatase activity.
    Du Q; Zhang X; Cao H; Huang Y
    Mikrochim Acta; 2020 May; 187(6):357. PubMed ID: 32468344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silver/copper bimetallic nanoclusters integrating with cryonase-assisted target recycling amplification detection of Salmonella typhimurium.
    Dou S; Liu M; Zhang F; Li B; Zhang Y; Li F; Guo Y; Sun X
    Mikrochim Acta; 2023 Sep; 190(10):403. PubMed ID: 37728643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A facile aptasensor based on polydopamine nanospheres for high-sensitivity sensing of T-2 toxin.
    Guo T; Wang C; Zhou H; Zhang Y; Ma L; Wang S
    Anal Methods; 2021 Jun; 13(24):2654-2658. PubMed ID: 34036989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aptamer based electrochemical assay for protein kinase activity by coupling hybridization chain reaction.
    Jia LP; Zhao RN; Wang LJ; Ma RN; Zhang W; Shang L; Wang HS
    Biosens Bioelectron; 2018 Oct; 117():690-695. PubMed ID: 30014942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Förster resonance-energy-transfer detection of 2,4,6-trinitrophenol using copper nanoclusters.
    Deng X; Huang X; Wu D
    Anal Bioanal Chem; 2015 Jun; 407(16):4607-13. PubMed ID: 25893800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A polydopamine nanosphere based highly sensitive and selective aptamer cytosensor with enzyme amplification.
    Fan D; Wu C; Wang K; Gu X; Liu Y; Wang E
    Chem Commun (Camb); 2016 Jan; 52(2):406-9. PubMed ID: 26526224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel aptasensor for the ultra-sensitive detection of adenosine triphosphate via aptamer/quantum dot based resonance energy transfer.
    Li Z; Wang Y; Liu Y; Zeng Y; Huang A; Peng N; Liu X; Liu J
    Analyst; 2013 Sep; 138(17):4732-6. PubMed ID: 23814782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fluorescence aptasensor based on two-dimensional sheet metal-organic frameworks for monitoring adenosine triphosphate.
    Hai XM; Li N; Wang K; Zhang ZQ; Zhang J; Dang FQ
    Anal Chim Acta; 2018 Jan; 998():60-66. PubMed ID: 29153087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel "off-on" ratiometric fluorescent aptasensor for adenosine detection based on FRET between quantum dots and graphene oxide.
    Li P; Luo C; Chen X; Huang C
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jan; 305():123557. PubMed ID: 37866265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Split aptamer based sensing platform for adenosine deaminase detection by fluorescence resonance energy transfer.
    Wang M; Chen J; Su D; Wang G; Su X
    Talanta; 2019 Jun; 198():1-7. PubMed ID: 30876536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel single-stranded DNA binding protein-assisted fluorescence aptamer switch based on FRET for homogeneous detection of antibiotics.
    Wang Y; Gan N; Zhou Y; Li T; Cao Y; Chen Y
    Biosens Bioelectron; 2017 Jan; 87():508-513. PubMed ID: 27596250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A design of red emission CDs-based aptasensor for sensitive detection of insulin via fluorescence resonance energy transfer.
    He Y; Cheng Y; Wen X
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 280():121497. PubMed ID: 35749972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.