BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 30224349)

  • 1. A sequence-based, deep learning model accurately predicts RNA splicing branchpoints.
    Paggi JM; Bejerano G
    RNA; 2018 Dec; 24(12):1647-1658. PubMed ID: 30224349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide discovery of human splicing branchpoints.
    Mercer TR; Clark MB; Andersen SB; Brunck ME; Haerty W; Crawford J; Taft RJ; Nielsen LK; Dinger ME; Mattick JS
    Genome Res; 2015 Feb; 25(2):290-303. PubMed ID: 25561518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Most human introns are recognized via multiple and tissue-specific branchpoints.
    Pineda JMB; Bradley RK
    Genes Dev; 2018 Apr; 32(7-8):577-591. PubMed ID: 29666160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting human splicing branchpoints by combining sequence-derived features and multi-label learning methods.
    Zhang W; Zhu X; Fu Y; Tsuji J; Weng Z
    BMC Bioinformatics; 2017 Dec; 18(Suppl 13):464. PubMed ID: 29219070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning annotation of human branchpoints.
    Signal B; Gloss BS; Dinger ME; Mercer TR
    Bioinformatics; 2018 Mar; 34(6):920-927. PubMed ID: 29092009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Splicing from Primary Sequence with Deep Learning.
    Jaganathan K; Kyriazopoulou Panagiotopoulou S; McRae JF; Darbandi SF; Knowles D; Li YI; Kosmicki JA; Arbelaez J; Cui W; Schwartz GB; Chow ED; Kanterakis E; Gao H; Kia A; Batzoglou S; Sanders SJ; Farh KK
    Cell; 2019 Jan; 176(3):535-548.e24. PubMed ID: 30661751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human GC-AG alternative intron isoforms with weak donor sites show enhanced consensus at acceptor exon positions.
    Thanaraj TA; Clark F
    Nucleic Acids Res; 2001 Jun; 29(12):2581-93. PubMed ID: 11410667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational analysis of splicing errors and mutations in human transcripts.
    Kurmangaliyev YZ; Gelfand MS
    BMC Genomics; 2008 Jan; 9():13. PubMed ID: 18194514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutational analysis of a plant branchpoint and polypyrimidine tract required for constitutive splicing of a mini-exon.
    Simpson CG; Thow G; Clark GP; Jennings SN; Watters JA; Brown JW
    RNA; 2002 Jan; 8(1):47-56. PubMed ID: 11873758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CADD-Splice-improving genome-wide variant effect prediction using deep learning-derived splice scores.
    Rentzsch P; Schubach M; Shendure J; Kircher M
    Genome Med; 2021 Feb; 13(1):31. PubMed ID: 33618777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage.
    Alsafadi S; Houy A; Battistella A; Popova T; Wassef M; Henry E; Tirode F; Constantinou A; Piperno-Neumann S; Roman-Roman S; Dutertre M; Stern MH
    Nat Commun; 2016 Feb; 7():10615. PubMed ID: 26842708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RS domain-splicing signal interactions in splicing of U12-type and U2-type introns.
    Shen H; Green MR
    Nat Struct Mol Biol; 2007 Jul; 14(7):597-603. PubMed ID: 17603499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Splicing of constitutive upstream introns is essential for the recognition of intra-exonic suboptimal splice sites in the thrombopoietin gene.
    Romano M; Marcucci R; Baralle FE
    Nucleic Acids Res; 2001 Feb; 29(4):886-94. PubMed ID: 11160920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The low information content of Neurospora splicing signals: implications for RNA splicing and intron origin.
    Collins RA; Stajich JE; Field DJ; Olive JE; DeAbreu DM
    RNA; 2015 May; 21(5):997-1004. PubMed ID: 25805857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep RNA sequencing reveals a high frequency of alternative splicing events in the fungus Trichoderma longibrachiatum.
    Xie BB; Li D; Shi WL; Qin QL; Wang XW; Rong JC; Sun CY; Huang F; Zhang XY; Dong XW; Chen XL; Zhou BC; Zhang YZ; Song XY
    BMC Genomics; 2015 Feb; 16(1):54. PubMed ID: 25652134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intronic PAH gene mutations cause a splicing defect by a novel mechanism involving U1snRNP binding downstream of the 5' splice site.
    Martínez-Pizarro A; Dembic M; Pérez B; Andresen BS; Desviat LR
    PLoS Genet; 2018 Apr; 14(4):e1007360. PubMed ID: 29684050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudoexon activation in disease by non-splice site deep intronic sequence variation - wild type pseudoexons constitute high-risk sites in the human genome.
    Petersen USS; Doktor TK; Andresen BS
    Hum Mutat; 2022 Feb; 43(2):103-127. PubMed ID: 34837434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An intronic splicing enhancer binds U1 snRNPs to enhance splicing and select 5' splice sites.
    McCullough AJ; Berget SM
    Mol Cell Biol; 2000 Dec; 20(24):9225-35. PubMed ID: 11094074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of functional single nucleotide polymorphisms in the branchpoint site.
    Chiang HL; Wu JY; Chen YT
    Hum Genomics; 2017 Nov; 11(1):27. PubMed ID: 29121990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrasplicing coordinates alternative first exons with alternative splicing in the protein 4.1R gene.
    Parra MK; Tan JS; Mohandas N; Conboy JG
    EMBO J; 2008 Jan; 27(1):122-31. PubMed ID: 18079699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.