BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 30224349)

  • 41. Comprehensive characterisation of intronic mis-splicing mutations in human cancers.
    Jung H; Lee KS; Choi JK
    Oncogene; 2021 Feb; 40(7):1347-1361. PubMed ID: 33420369
    [TBL] [Abstract][Full Text] [Related]  

  • 42. TCIRG1-dependent recessive osteopetrosis: mutation analysis, functional identification of the splicing defects, and in vitro rescue by U1 snRNA.
    Susani L; Pangrazio A; Sobacchi C; Taranta A; Mortier G; Savarirayan R; Villa A; Orchard P; Vezzoni P; Albertini A; Frattini A; Pagani F
    Hum Mutat; 2004 Sep; 24(3):225-35. PubMed ID: 15300850
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Finding alternative splicing patterns with strong support from expressed sequences on individual exons/introns.
    Wong TK; Lam TW; Yang W; Yiu SM
    J Bioinform Comput Biol; 2008 Oct; 6(5):1021-33. PubMed ID: 18942164
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Read-Split-Run: an improved bioinformatics pipeline for identification of genome-wide non-canonical spliced regions using RNA-Seq data.
    Bai Y; Kinne J; Donham B; Jiang F; Ding L; Hassler JR; Kaufman RJ
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):503. PubMed ID: 27556805
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mouse nuclear RNAi-defective 2 promotes splicing of weak 5' splice sites.
    Flemr M; Schwaiger M; Hess D; Iesmantavicius V; Ahel J; Tuck AC; Mohn F; Bühler M
    RNA; 2023 Aug; 29(8):1140-1165. PubMed ID: 37137667
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Competing upstream 5' splice sites enhance the rate of proximal splicing.
    Hicks MJ; Mueller WF; Shepard PJ; Hertel KJ
    Mol Cell Biol; 2010 Apr; 30(8):1878-86. PubMed ID: 20123971
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantitative Activity Profile and Context Dependence of All Human 5' Splice Sites.
    Wong MS; Kinney JB; Krainer AR
    Mol Cell; 2018 Sep; 71(6):1012-1026.e3. PubMed ID: 30174293
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Widespread splicing of repetitive element loci into coding regions of gene transcripts.
    Darby MM; Leek JT; Langmead B; Yolken RH; Sabunciyan S
    Hum Mol Genet; 2016 Nov; 25(22):4962-4982. PubMed ID: 28171598
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A class of human exons with predicted distant branch points revealed by analysis of AG dinucleotide exclusion zones.
    Gooding C; Clark F; Wollerton MC; Grellscheid SN; Groom H; Smith CW
    Genome Biol; 2006; 7(1):R1. PubMed ID: 16507133
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Minimal conditions for exonization of intronic sequences: 5' splice site formation in alu exons.
    Sorek R; Lev-Maor G; Reznik M; Dagan T; Belinky F; Graur D; Ast G
    Mol Cell; 2004 Apr; 14(2):221-31. PubMed ID: 15099521
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Association pattern mining of intron retention events in human based on hybrid learning machine.
    Hu HJ; Goh SH; Lee YS
    Genes Genet Syst; 2010; 85(6):383-94. PubMed ID: 21415568
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural basis for recognition of intron branchpoint RNA by yeast Msl5 and selective effects of interfacial mutations on splicing of yeast pre-mRNAs.
    Jacewicz A; Chico L; Smith P; Schwer B; Shuman S
    RNA; 2015 Mar; 21(3):401-14. PubMed ID: 25587180
    [TBL] [Abstract][Full Text] [Related]  

  • 53. SpliceDetector: a software for detection of alternative splicing events in human and model organisms directly from transcript IDs.
    Baharlou Houreh M; Ghorbani Kalkhajeh P; Niazi A; Ebrahimi F; Ebrahimie E
    Sci Rep; 2018 Mar; 8(1):5063. PubMed ID: 29567976
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Upregulation of functional Kv11.1a isoform expression by modified U1 small nuclear RNA.
    Gong Q; Stump MR; Zhou Z
    Gene; 2018 Jan; 641():220-225. PubMed ID: 29066300
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Disease-causing variants of the conserved +2T of 5' splice sites can be rescued by engineered U1snRNAs.
    Scalet D; Maestri I; Branchini A; Bernardi F; Pinotti M; Balestra D
    Hum Mutat; 2019 Jan; 40(1):48-52. PubMed ID: 30408273
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Combinatorial Genetics Reveals a Scaling Law for the Effects of Mutations on Splicing.
    Baeza-Centurion P; Miñana B; Schmiedel JM; Valcárcel J; Lehner B
    Cell; 2019 Jan; 176(3):549-563.e23. PubMed ID: 30661752
    [TBL] [Abstract][Full Text] [Related]  

  • 57. trans-splicing to spliceosomal U2 snRNA suggests disruption of branch site-U2 pairing during pre-mRNA splicing.
    Smith DJ; Query CC; Konarska MM
    Mol Cell; 2007 Jun; 26(6):883-90. PubMed ID: 17588521
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Use of modified U1 small nuclear RNA for rescue from exon 7 skipping caused by 5'-splice site mutation of human cathepsin A gene.
    Yamazaki N; Kanazawa K; Kimura M; Ike H; Shinomiya M; Tanaka S; Shinohara Y; Minakawa N; Itoh K; Takiguchi Y
    Gene; 2018 Nov; 677():41-48. PubMed ID: 30010039
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Involvement of U6 snRNA in 5' splice site selection.
    Kandels-Lewis S; Séraphin B
    Science; 1993 Dec; 262(5142):2035-9. PubMed ID: 8266100
    [TBL] [Abstract][Full Text] [Related]  

  • 60. P element temperature-specific transposition: a model for possible regulation of mobile elements activity by pre-mRNA secondary structure.
    Gultyaev A; Redchuk T; Korolova A; Kozeretska I
    Tsitol Genet; 2014; 48(6):40-4. PubMed ID: 25536821
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.