These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 30224564)

  • 1. A Liquid-core Liquid-cladding Optical Waveguide Based on Thermal Gradients across the Laminar Flow of Water in Capillary Tubing.
    Nakamura M; Murata H; Sato K; Tsunoda KI
    Anal Sci; 2019 Feb; 35(2):215-218. PubMed ID: 30224564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of liquid-core/liquid-cladding optical waveguides of a sodium chloride solution/water system by computational fluid dynamics.
    Kamiyama J; Asanuma S; Murata H; Sugii Y; Hotta H; Sato K; Tsunoda K
    Appl Spectrosc; 2013 Dec; 67(12):1479-84. PubMed ID: 24359663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic control of liquid-core/liquid-cladding optical waveguides.
    Wolfe DB; Conroy RS; Garstecki P; Mayers BT; Fischbach MA; Paul KE; Prentiss M; Whitesides GM
    Proc Natl Acad Sci U S A; 2004 Aug; 101(34):12434-8. PubMed ID: 15314232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optofluidic particle manipulation in a liquid-core/liquid-cladding waveguide.
    Lee KS; Yoon SY; Lee KH; Kim SB; Sung HJ; Kim SS
    Opt Express; 2012 Jul; 20(16):17348-58. PubMed ID: 23038286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid Cladding Mediated Optical Fiber Sensors for Copper Ion Detection.
    Tran VT; Tran NHT; Nguyen TT; Yoon WJ; Ju H
    Micromachines (Basel); 2018 Sep; 9(9):. PubMed ID: 30424404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-Free Optical Biochemical Sensors via Liquid-Cladding-Induced Modulation of Waveguide Modes.
    Tran NHT; Kim J; Phan TB; Khym S; Ju H
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31478-31487. PubMed ID: 28849907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconfigurable liquid-core/liquid-cladding optical waveguides with dielectrophoresis-driven virtual microchannels on an electromicrofluidic platform.
    Fan SK; Lee HP; Chien CC; Lu YW; Chiu Y; Lin FY
    Lab Chip; 2016 Mar; 16(5):847-54. PubMed ID: 26841828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A solid-cladding/liquid-core/liquid-cladding sandwich optical waveguide for the study of dynamic extraction of dye by ionic liquid BmimPF6.
    Chen X; Sakurazawa A; Sato K; Tsunoda K; Wang J
    Appl Spectrosc; 2012 Jul; 66(7):798-802. PubMed ID: 22734859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel.
    Tang SK; Stan CA; Whitesides GM
    Lab Chip; 2008 Mar; 8(3):395-401. PubMed ID: 18305856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Fabrication of an Optical Fiber Made of Water.
    Douvidzon ML; Maayani S; Martin LL; Carmon T
    J Vis Exp; 2018 Nov; (141):. PubMed ID: 30474627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Polydimethylsiloxane (PDMS) Waveguide Sensor that Mimics a Neuromast to Measure Fluid Flow Velocity.
    Wiesmayr B; Höglinger M; Krieger M; Lindner P; Baumgartner W; Stadler AT
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30813266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent liquid-core/air-cladding waveguides towards integrated optofluidic light sources.
    Lim JM; Kim SH; Choi JH; Yang SM
    Lab Chip; 2008 Sep; 8(9):1580-5. PubMed ID: 18818816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High Sensitive Temperature Sensor Using a Liquid-core Optical Fiber with Small Refractive Index Difference Between Core and Cladding Materials.
    Xu Y; Chen X; Zhu Y
    Sensors (Basel); 2008 Mar; 8(3):1872-1878. PubMed ID: 27879798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Mass Transfer of Hemoglobin at the Aqueous/Ionic-Liquid Interface Monitored with Liquid Core Optical Waveguide.
    Chen X; Yang X; Zeng W; Wang J
    Langmuir; 2015 Aug; 31(30):8379-85. PubMed ID: 26169186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theory of fiber optic radiometry, emissivity of fibers, and distributed thermal sensors.
    Zur A; Katzir A
    Appl Opt; 1991 Feb; 30(6):660-73. PubMed ID: 20582041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the cladding on pulse broadening in graded-index optical waveguides.
    Olshansky R
    Appl Opt; 1977 Aug; 16(8):2171-4. PubMed ID: 20168892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of Tetrahydrofuran/Water Optical Waveguide and Its Application to the Observation of Extraction Behavior of 1-Anilino-8-naphtalene Sulfonate at the Tetrahydrofuran/Water Interface.
    Takiguchi H; Asanuma S; Kamiyama J; Murata H; Hasegawa Y; Yoshizawa S; Hotta H; Odake T; Umemura T; Sato K; Tsunoda KI
    Anal Sci; 2017; 33(4):449-455. PubMed ID: 28392518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hollow fiber sensor based on metal-cladding waveguide with extended detection range.
    Tan XJ; Zhu XS; Shi YW
    Opt Express; 2017 Jul; 25(15):16996-17003. PubMed ID: 28789198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable optofluidic aperture configured by a liquid-core/liquid-cladding structure.
    Song C; Nguyen NT; Asundi AK; Low CL
    Opt Lett; 2011 May; 36(10):1767-9. PubMed ID: 21593884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Occurrence of turbulent flow conditions in supercritical fluid chromatography.
    De Pauw R; Choikhet K; Desmet G; Broeckhoven K
    J Chromatogr A; 2014 Sep; 1361():277-85. PubMed ID: 25145564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.