These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30224657)

  • 1. Ultrawide Bandwidth Electromagnetic Wave Absorbers Composed of Double-Layer Frequency Selective Surfaces with Different Patterns.
    Liu T; Kim SS
    Sci Rep; 2018 Sep; 8(1):13889. PubMed ID: 30224657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrawide Bandwidth Electromagnetic Wave Absorbers Using a High-capacitive Folded Spiral Frequency Selective Surface in a Multilayer Structure.
    Liu T; Kim SS
    Sci Rep; 2019 Nov; 9(1):16494. PubMed ID: 31712676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and characterization of resistive double square loop arrays for ultra-wide bandwidth microwave absorption.
    Jeong JY; Lee JR; Park H; Jung J; Choi DS; Jeon EC; Shin J; Han JS; Je TJ
    Sci Rep; 2021 Jun; 11(1):12767. PubMed ID: 34140536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Study of Square and Circular Loop Frequency Selective Surfaces for Millimeter-Wave Imaging Diagnostics Systems.
    Mohyuddin W; Kim DH; Choi HC; Kim KW
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30217059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dual layer broadband radar absorber to minimize electromagnetic interference in radomes.
    Beeharry T; Yahiaoui R; Selemani K; Ouslimani HH
    Sci Rep; 2018 Jan; 8(1):382. PubMed ID: 29321623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-layer structure microwave absorbers based on nanocrystalline alpha-Fe, Fe0.2(Co0.2Ni0.8)0.8 and Ni0.5Zn0.5Fe2O4 porous microfibers.
    Liu H; Meng X; Yang X; Jing M; Shen X; Dong M
    J Nanosci Nanotechnol; 2014 Apr; 14(4):2878-84. PubMed ID: 24734704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni-P coated tetrapod-shaped ZnO nano- and microstructures.
    Najim M; Modi G; Mishra YK; Adelung R; Singh D; Agarwala V
    Phys Chem Chem Phys; 2015 Sep; 17(35):22923-33. PubMed ID: 26267361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-Wideband and Wide-Angle Microwave Metamaterial Absorber.
    Begaud X; Lepage AC; Varault S; Soiron M; Barka A
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30347784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave properties of the single-layer periodic structure composites composed of ethylene-vinyl acetate and polycrystalline iron fibers.
    Guo Z; Huang H; Xie D; Xia H
    Sci Rep; 2017 Sep; 7(1):11331. PubMed ID: 28900262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transparent ultra-wideband double-resonance-layer metamaterial absorber designed by a semiempirical optimization method.
    Li H; Dong H; Zhang Y; Mou N; Xin Y; Deng R; Zhang L
    Opt Express; 2021 Jun; 29(12):18446-18457. PubMed ID: 34154100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approaching the lowest operating frequency thickness limits with complex surface impedance of ultrathin absorbers.
    Li R; Dong J; Si K; He F; Zha D; Miao L; Bie S; Jiang J
    Opt Express; 2021 Feb; 29(3):4442-4452. PubMed ID: 33771022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-Wideband Flexible Absorber in Microwave Frequency Band.
    Fan S; Song Y
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33143266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A practical double-sided frequency selective surface for millimeter-wave applications.
    Mohyuddin W; Woo DS; Choi HC; Kim KW
    Rev Sci Instrum; 2018 Feb; 89(2):024703. PubMed ID: 29495816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metasurface Salisbury screen: achieving ultra-wideband microwave absorption.
    Zhou Z; Chen K; Zhao J; Chen P; Jiang T; Zhu B; Feng Y; Li Y
    Opt Express; 2017 Nov; 25(24):30241-30252. PubMed ID: 29221055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-wide transmission band frequency-selective rasorber using 2.5-D miniaturized structures.
    Zhu S; Cao Z; Zhou H; Geng R; Deng G; Quan X
    Opt Express; 2022 Sep; 30(19):33980-33993. PubMed ID: 36242421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadband microwave absorption utilizing water-based metamaterial structures.
    Zhao J; Wei S; Wang C; Chen K; Zhu B; Jiang T; Feng Y
    Opt Express; 2018 Apr; 26(7):8522-8531. PubMed ID: 29715818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of nanosize polyaniline and its utilization for microwave absorber.
    Abbas SM; Dixit AK; Chatterjee R; Goel TC
    J Nanosci Nanotechnol; 2007 Jun; 7(6):2129-33. PubMed ID: 17655005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal parameter retrieval for metamaterial absorbers using the least-square method for wide incidence angle insensitivity.
    Lee D; Trung NT; Moon UC; Lim S
    Appl Opt; 2017 Jun; 56(16):4670-4674. PubMed ID: 29047598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of Metamaterial Absorber using Eight-Resistive-Arm Cell for Simultaneous Broadband and Wide-Incidence-Angle Absorption.
    Nguyen TT; Lim S
    Sci Rep; 2018 Apr; 8(1):6633. PubMed ID: 29700385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bandwidth-enhanced and Wide-angle-of-incidence Metamaterial Absorber using a Hybrid Unit Cell.
    Nguyen TT; Lim S
    Sci Rep; 2017 Nov; 7(1):14814. PubMed ID: 29093515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.