These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 30224660)

  • 1. Method for high frequency tracking and sub-nm sample stabilization in single molecule fluorescence microscopy.
    Schmidt PD; Reichert BH; Lajoie JG; Sivasankar S
    Sci Rep; 2018 Sep; 8(1):13912. PubMed ID: 30224660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlative Atomic Force and Single-Molecule Fluorescence Microscopy of Nucleoprotein Complexes.
    De Keersmaecker H; Frederickx W; Fujita Y; De Feyter S; Uji-I H; Rocha S; Vanderlinden W
    Methods Mol Biol; 2018; 1814():339-359. PubMed ID: 29956242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Molecule Kinetics in Living Cells.
    Elf J; Barkefors I
    Annu Rev Biochem; 2019 Jun; 88():635-659. PubMed ID: 30359080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time parallel 3D multiple particle tracking with single molecule centrifugal force microscopy.
    Kou L; Jin L; Lei H; Hu C; Li H; Hu X; Hu X
    J Microsc; 2019 Mar; 273(3):178-188. PubMed ID: 30489640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ultimate picture-the combination of live cell superresolution microscopy and single molecule tracking yields highest spatio-temporal resolution.
    Dersch S; Graumann PL
    Curr Opin Microbiol; 2018 Jun; 43():55-61. PubMed ID: 29227820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances in Biological Single-Molecule Applications of Optical Tweezers and Fluorescence Microscopy.
    Hashemi Shabestari M; Meijering AEC; Roos WH; Wuite GJL; Peterman EJG
    Methods Enzymol; 2017; 582():85-119. PubMed ID: 28062046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Super-Resolution Microscopy Techniques and Their Potential for Applications in Radiation Biophysics.
    Eberle JP; Rapp A; Krufczik M; Eryilmaz M; Gunkel M; Erfle H; Hausmann M
    Methods Mol Biol; 2017; 1663():1-13. PubMed ID: 28924654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope.
    Schmidt R; Weihs T; Wurm CA; Jansen I; Rehman J; Sahl SJ; Hell SW
    Nat Commun; 2021 Mar; 12(1):1478. PubMed ID: 33674570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescent Biosensors Based on Single-Molecule Counting.
    Ma F; Li Y; Tang B; Zhang CY
    Acc Chem Res; 2016 Sep; 49(9):1722-30. PubMed ID: 27583695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breaking the Concentration Barrier for Single-Molecule Fluorescence Measurements.
    Peng S; Wang W; Chen C
    Chemistry; 2018 Jan; 24(5):1002-1009. PubMed ID: 29044746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated platform for high-throughput nanoscopy.
    Barentine AES; Lin Y; Courvan EM; Kidd P; Liu M; Balduf L; Phan T; Rivera-Molina F; Grace MR; Marin Z; Lessard M; Rios Chen J; Wang S; Neugebauer KM; Bewersdorf J; Baddeley D
    Nat Biotechnol; 2023 Nov; 41(11):1549-1556. PubMed ID: 36914886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct-laser writing for subnanometer focusing and single-molecule imaging.
    Coelho S; Baek J; Walsh J; Justin Gooding J; Gaus K
    Nat Commun; 2022 Feb; 13(1):647. PubMed ID: 35115532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Resolution "Fleezers": Dual-Trap Optical Tweezers Combined with Single-Molecule Fluorescence Detection.
    Whitley KD; Comstock MJ; Chemla YR
    Methods Mol Biol; 2017; 1486():183-256. PubMed ID: 27844430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct supercritical angle localization microscopy for nanometer 3D superresolution.
    Dasgupta A; Deschamps J; Matti U; Hübner U; Becker J; Strauss S; Jungmann R; Heintzmann R; Ries J
    Nat Commun; 2021 Feb; 12(1):1180. PubMed ID: 33608524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes.
    Balzarotti F; Eilers Y; Gwosch KC; Gynnå AH; Westphal V; Stefani FD; Elf J; Hell SW
    Science; 2017 Feb; 355(6325):606-612. PubMed ID: 28008086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlative Super-Resolution Fluorescence Imaging and Atomic Force Microscopy for the Characterization of Biological Samples.
    Bondia P; Casado S; Flors C
    Methods Mol Biol; 2017; 1663():105-113. PubMed ID: 28924662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Brief Introduction to Single-Molecule Fluorescence Methods.
    van den Wildenberg SMJL; Prevo B; Peterman EJG
    Methods Mol Biol; 2024; 2694():111-132. PubMed ID: 37824002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlative In-Resin Super-Resolution Fluorescence and Electron Microscopy of Cultured Cells.
    Johnson E; Kaufmann R
    Methods Mol Biol; 2017; 1663():163-177. PubMed ID: 28924667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Simple Marker-Assisted 3D Nanometer Drift Correction Method for Superresolution Microscopy.
    Ma H; Xu J; Jin J; Huang Y; Liu Y
    Biophys J; 2017 May; 112(10):2196-2208. PubMed ID: 28538156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Resolution Optical Tweezers Combined With Single-Molecule Confocal Microscopy.
    Whitley KD; Comstock MJ; Chemla YR
    Methods Enzymol; 2017; 582():137-169. PubMed ID: 28062033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.