BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 30224662)

  • 1. FRIGIDA establishes a local chromosomal environment for FLOWERING LOCUS C mRNA production.
    Li Z; Jiang D; He Y
    Nat Plants; 2018 Oct; 4(10):836-846. PubMed ID: 30224662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishment of the winter-annual growth habit via FRIGIDA-mediated histone methylation at FLOWERING LOCUS C in Arabidopsis.
    Jiang D; Gu X; He Y
    Plant Cell; 2009 Jun; 21(6):1733-46. PubMed ID: 19567704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SUPPRESSOR OF FRIGIDA4, encoding a C2H2-Type zinc finger protein, represses flowering by transcriptional activation of Arabidopsis FLOWERING LOCUS C.
    Kim S; Choi K; Park C; Hwang HJ; Lee I
    Plant Cell; 2006 Nov; 18(11):2985-98. PubMed ID: 17138694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FLOWERING LOCUS C EXPRESSOR family proteins regulate FLOWERING LOCUS C expression in both winter-annual and rapid-cycling Arabidopsis.
    Ding L; Kim SY; Michaels SD
    Plant Physiol; 2013 Sep; 163(1):243-52. PubMed ID: 23899645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FRIGIDA delays flowering in Arabidopsis via a cotranscriptional mechanism involving direct interaction with the nuclear cap-binding complex.
    Geraldo N; Bäurle I; Kidou S; Hu X; Dean C
    Plant Physiol; 2009 Jul; 150(3):1611-8. PubMed ID: 19429606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SUPPRESSOR OF FRIGIDA3 encodes a nuclear ACTIN-RELATED PROTEIN6 required for floral repression in Arabidopsis.
    Choi K; Kim S; Kim SY; Kim M; Hyun Y; Lee H; Choe S; Kim SG; Michaels S; Lee I
    Plant Cell; 2005 Oct; 17(10):2647-60. PubMed ID: 16155178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The FRIGIDA complex activates transcription of FLC, a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors.
    Choi K; Kim J; Hwang HJ; Kim S; Park C; Kim SY; Lee I
    Plant Cell; 2011 Jan; 23(1):289-303. PubMed ID: 21282526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations in the Arabidopsis SWC6 gene, encoding a component of the SWR1 chromatin remodelling complex, accelerate flowering time and alter leaf and flower development.
    Lázaro A; Gómez-Zambrano A; López-González L; Piñeiro M; Jarillo JA
    J Exp Bot; 2008; 59(3):653-66. PubMed ID: 18296430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arabidopsis trithorax-related3/SET domain GROUP2 is required for the winter-annual habit of Arabidopsis thaliana.
    Yun JY; Tamada Y; Kang YE; Amasino RM
    Plant Cell Physiol; 2012 May; 53(5):834-46. PubMed ID: 22378382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TAF15b, involved in the autonomous pathway for flowering, represses transcription of FLOWERING LOCUS C.
    Eom H; Park SJ; Kim MK; Kim H; Kang H; Lee I
    Plant J; 2018 Jan; 93(1):79-91. PubMed ID: 29086456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FRIGIDA LIKE 2 is a functional allele in Landsberg erecta and compensates for a nonsense allele of FRIGIDA LIKE 1.
    Schläppi MR
    Plant Physiol; 2006 Dec; 142(4):1728-38. PubMed ID: 17056759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive, winter-annual habit in Arabidopsis.
    He Y; Doyle MR; Amasino RM
    Genes Dev; 2004 Nov; 18(22):2774-84. PubMed ID: 15520273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Floral regulators FLC and SOC1 directly regulate expression of the B3-type transcription factor TARGET OF FLC AND SVP 1 at the Arabidopsis shoot apex via antagonistic chromatin modifications.
    Richter R; Kinoshita A; Vincent C; Martinez-Gallegos R; Gao H; van Driel AD; Hyun Y; Mateos JL; Coupland G
    PLoS Genet; 2019 Apr; 15(4):e1008065. PubMed ID: 30946745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ARABIDOPSIS TRITHORAX-RELATED7 is required for methylation of lysine 4 of histone H3 and for transcriptional activation of FLOWERING LOCUS C.
    Tamada Y; Yun JY; Woo SC; Amasino RM
    Plant Cell; 2009 Oct; 21(10):3257-69. PubMed ID: 19855050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Arabidopsis TALE homeobox gene ATH1 controls floral competency through positive regulation of FLC.
    Proveniers M; Rutjens B; Brand M; Smeekens S
    Plant J; 2007 Dec; 52(5):899-913. PubMed ID: 17908157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The FLX gene of Arabidopsis is required for FRI-dependent activation of FLC expression.
    Andersson CR; Helliwell CA; Bagnall DJ; Hughes TP; Finnegan EJ; Peacock WJ; Dennis ES
    Plant Cell Physiol; 2008 Feb; 49(2):191-200. PubMed ID: 18156133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonadditive regulation of FRI and FLC loci mediates flowering-time variation in Arabidopsis allopolyploids.
    Wang J; Tian L; Lee HS; Chen ZJ
    Genetics; 2006 Jun; 173(2):965-74. PubMed ID: 16547097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth habit determination by the balance of histone methylation activities in Arabidopsis.
    Ko JH; Mitina I; Tamada Y; Hyun Y; Choi Y; Amasino RM; Noh B; Noh YS
    EMBO J; 2010 Sep; 29(18):3208-15. PubMed ID: 20711170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Arabidopsis Paf1c complex component CDC73 participates in the modification of FLOWERING LOCUS C chromatin.
    Yu X; Michaels SD
    Plant Physiol; 2010 Jul; 153(3):1074-84. PubMed ID: 20463090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATX1 and HUB1/2 promote recruitment of the transcription elongation factor VIP2 to modulate the floral transition in Arabidopsis.
    Lu Q; Shi W; Zhang F; Ding Y
    Plant J; 2024 Jun; 118(6):1760-1773. PubMed ID: 38446797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.