These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30224993)

  • 1. Room-temperature excitonic emission with a phonon replica from graphene nanosheets deposited on Ni-nanocrystallites/Si-nanoporous pillar array.
    Tang Z; Xu T; Li S; Shi Z; Li X
    R Soc Open Sci; 2018 Aug; 5(8):172238. PubMed ID: 30224993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silicon nanoporous pillar array: a silicon hierarchical structure with high light absorption and triple-band photoluminescence.
    Xu HJ; Li XJ
    Opt Express; 2008 Mar; 16(5):2933-41. PubMed ID: 18542379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitonic properties of layer-by-layer CVD grown ZnO hexagonal microdisks.
    Sikdar MK; Sarangi B; Sahoo PK
    Nanotechnology; 2021 Jul; 32(41):. PubMed ID: 34198273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wet Chemically Synthesized CuO Bipods and their Optical Properties.
    Samanta PK; Saha A; Kamilya T
    Recent Pat Nanotechnol; 2016; 10(1):20-5. PubMed ID: 27018270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced free exciton and direct band-edge emissions at room temperature in ultrathin ZnO films grown on Si nanopillars by atomic layer deposition.
    Chang YM; Shieh J; Chu PY; Lee HY; Lin CM; Juang JY
    ACS Appl Mater Interfaces; 2011 Nov; 3(11):4415-9. PubMed ID: 21967063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extinction of the zero-phonon line and the first-order phonon sideband in excitonic luminescence of ZnO at room temperature: the self-absorption effect.
    Ye H; Su Z; Tang F; Zheng C; Chen G; Wang J; Xu S
    Sci Bull (Beijing); 2017 Nov; 62(22):1525-1529. PubMed ID: 36659430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoluminescence of Si nanocrystallites and amorphous oxygen-containing si nanoparticles: the reversible effect of ambient atmosphere on luminescence.
    Tsai MY; Chiu JJ; Horng SF; Chi CC; Perng TP
    J Nanosci Nanotechnol; 2008 Jan; 8(1):366-73. PubMed ID: 18468084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trion-Inhibited Strong Excitonic Emission and Broadband Giant Photoresponsivity from Chemical Vapor-Deposited Monolayer MoS
    Paul KK; Mawlong LPL; Giri PK
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42812-42825. PubMed ID: 30421600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical Characterization of Strong UV Luminescence Emitted from the Excitonic Edge of Nickel Oxide Nanotowers.
    Ho CH; Kuo YM; Chan CH; Ma YR
    Sci Rep; 2015 Oct; 5():15856. PubMed ID: 26506907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical and excitonic properties of crystalline ZnS nanowires: toward efficient ultraviolet emission at room temperature.
    Chen R; Li D; Liu B; Peng Z; Gurzadyan GG; Xiong Q; Sun H
    Nano Lett; 2010 Dec; 10(12):4956-61. PubMed ID: 21069979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructure and enhanced exciton-phonon coupling in Fe doped ZnO nanoparticles.
    Pandiyarajan T; Udayabhaskar R; Karthikeyan B
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 103():173-8. PubMed ID: 23261610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. White light emission with tuneable colour temperature and high colour rendering index from CdS/Si multi-interface nanoheterojunctions.
    Li Y; Li Song Y; Fei Ji P; Qun Zhou F
    Nanoscale; 2017 May; 9(18):5922-5926. PubMed ID: 28436499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Narrow Linewidth Excitonic Emission in Organic-Inorganic Lead Iodide Perovskite Single Crystals.
    Diab H; Trippé-Allard G; Lédée F; Jemli K; Vilar C; Bouchez G; Jacques VL; Tejeda A; Even J; Lauret JS; Deleporte E; Garrot D
    J Phys Chem Lett; 2016 Dec; 7(24):5093-5100. PubMed ID: 27973876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-Dimensional Excitonic Photoluminescence in Graphene on a Cu Surface.
    Park Y; Kim Y; Myung CW; Taylor RA; Chan CC; Reid BP; Puchtler TJ; Nicholas RJ; Singh LT; Lee G; Hwang CC; Park CY; Kim KS
    ACS Nano; 2017 Mar; 11(3):3207-3212. PubMed ID: 28231429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin of visible and near-infrared photoluminescence from chemically etched Si nanowires decorated with arbitrarily shaped Si nanocrystals.
    Ghosh R; Giri PK; Imakita K; Fujii M
    Nanotechnology; 2014 Jan; 25(4):045703. PubMed ID: 24394591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Comparative study on photoluminescence from Ge/PS and Ge/SiO2 thin films].
    Sun XJ; Ma SY; Wei JJ; Xu XL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Sep; 28(9):2033-7. PubMed ID: 19093555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unambiguous identification of recombination lines in single zinc-blende ZnSe nanowires in direct relation to their microstructure.
    Saxena A; Pan Q; Ruda HE
    Nanotechnology; 2013 Mar; 24(10):105701. PubMed ID: 23416878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SERS detection of low-concentration adenine by a patterned silver structure immersion plated on a silicon nanoporous pillar array.
    Feng F; Zhi G; Jia HS; Cheng L; Tian YT; Li XJ
    Nanotechnology; 2009 Jul; 20(29):295501. PubMed ID: 19567965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vertical GaN nanocolumns grown on graphene intermediated with a thin AlN buffer layer.
    Liudi Mulyo A; Rajpalke MK; Kuroe H; Vullum PE; Weman H; Fimland BO; Kishino K
    Nanotechnology; 2019 Jan; 30(1):015604. PubMed ID: 30375368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Room-temperature preparation of ZnO nanosheets grown on Si substrates by a seed-layer assisted solution route.
    Sun H; Luo M; Weng W; Cheng K; Du P; Shen G; Han G
    Nanotechnology; 2008 Mar; 19(12):125603. PubMed ID: 21817735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.