BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30225167)

  • 1. Effects of macroalgae loss in an Antarctic marine food web: applying extinction thresholds to food web studies.
    Cordone G; Marina TI; Salinas V; Doyle SR; Saravia LA; Momo FR
    PeerJ; 2018; 6():e5531. PubMed ID: 30225167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Marine food webs are more complex but less stable in sub-Antarctic (Beagle Channel, Argentina) than in Antarctic (Potter Cove, Antarctic Peninsula) regions.
    Rodriguez ID; Marina TI; Schloss IR; Saravia LA
    Mar Environ Res; 2022 Feb; 174():105561. PubMed ID: 35026725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of macroalgal colonization on newly ice-free areas following glacial retreat in Potter Cove (South Shetland Islands), Antarctica.
    Quartino ML; Deregibus D; Campana GL; Latorre GE; Momo FR
    PLoS One; 2013; 8(3):e58223. PubMed ID: 23484000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macroalgae degradation promotes microbial iron reduction via electron shuttling in coastal Antarctic sediments.
    Aromokeye DA; Willis-Poratti G; Wunder LC; Yin X; Wendt J; Richter-Heitmann T; Henkel S; Vázquez S; Elvert M; Mac Cormack W; Friedrich MW
    Environ Int; 2021 Nov; 156():106602. PubMed ID: 34051435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential macroalgal expansion and blue carbon gains with northern Antarctic Peninsula glacial retreat.
    Deregibus D; Campana GL; Neder C; Barnes DKA; Zacher K; Piscicelli JM; Jerosch K; Quartino ML
    Mar Environ Res; 2023 Jul; 189():106056. PubMed ID: 37385084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inter-decadal variability of phytoplankton biomass along the coastal West Antarctic Peninsula.
    Kim H; Ducklow HW; Abele D; Ruiz Barlett EM; Buma AGJ; Meredith MP; Rozema PD; Schofield OM; Venables HJ; Schloss IR
    Philos Trans A Math Phys Eng Sci; 2018 Jun; 376(2122):. PubMed ID: 29760117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antarctic ascidians under increasing sedimentation: Physiological thresholds and ecosystem hysteresis.
    Torre L; Alurralde G; Lagger C; Abele D; Schloss IR; Sahade R
    Mar Environ Res; 2021 May; 167():105284. PubMed ID: 33730611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different feeding strategies in Antarctic scavenging amphipods and their implications for colonisation success in times of retreating glaciers.
    Seefeldt MA; Campana GL; Deregibus D; Quartino ML; Abele D; Tollrian R; Held C
    Front Zool; 2017; 14():59. PubMed ID: 29299038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benthic Trophic Interactions in an Antarctic Shallow Water Ecosystem Affected by Recent Glacier Retreat.
    Pasotti F; Saravia LA; De Troch M; Tarantelli MS; Sahade R; Vanreusel A
    PLoS One; 2015; 10(11):e0141742. PubMed ID: 26559062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Latitudinal changes in the trophic structure of benthic coastal food webs along the Antarctic Peninsula.
    Cardona L; Lloret-Lloret E; Moles J; Avila C
    Mar Environ Res; 2021 May; 167():105290. PubMed ID: 33684658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial variability of biogeochemistry in shallow coastal benthic communities of Potter Cove (Antarctica) and the impact of a melting glacier.
    Hoffmann R; Pasotti F; Vázquez S; Lefaible N; Torstensson A; MacCormack W; Wenzhöfer F; Braeckman U
    PLoS One; 2018; 13(12):e0207917. PubMed ID: 30566444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trophic redundancy reduces vulnerability to extinction cascades.
    Sanders D; Thébault E; Kehoe R; Frank van Veen FJ
    Proc Natl Acad Sci U S A; 2018 Mar; 115(10):2419-2424. PubMed ID: 29467292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro- and mesozooplankton successions in an Antarctic coastal environment during a warm year.
    Garcia MD; Dutto MS; Chazarreta CJ; Berasategui AA; Schloss IR; Hoffmeyer MS
    PLoS One; 2020; 15(5):e0232614. PubMed ID: 32407403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of macroalgal detritus in shallow coastal Antarctic sediments.
    Braeckman U; Pasotti F; Vázquez S; Zacher K; Hoffmann R; Elvert M; Marchant H; Buckner C; Quartino ML; Mác Cormack W; Soetaert K; Wenzhöfer F; Vanreusel A
    Limnol Oceanogr; 2019 Jul; 64(4):1423-1441. PubMed ID: 31598006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Food web structure and interaction strength pave the way for vulnerability to extinction.
    Karlsson P; Jonsson T; Jonsson A
    J Theor Biol; 2007 Nov; 249(1):77-92. PubMed ID: 17727894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benthic colonization in newly ice-free soft-bottom areas in an Antarctic fjord.
    Lagger C; Servetto N; Torre L; Sahade R
    PLoS One; 2017; 12(11):e0186756. PubMed ID: 29117262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robustness of empirical food webs with varying consumer's sensitivities to loss of resources.
    Bellingeri M; Vincenzi S
    J Theor Biol; 2013 Sep; 333():18-26. PubMed ID: 23685067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of suspension feeders in antarctic pelagic-benthic coupling: Trophic ecology and potential carbon sinks under climate change.
    Alurralde G; Fuentes VL; Maggioni T; Movilla J; Olariaga A; Orejas C; Schloss IR; Tatián M
    Mar Environ Res; 2019 Dec; 152():104790. PubMed ID: 31537412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation.
    Ullah H; Nagelkerken I; Goldenberg SU; Fordham DA
    PLoS Biol; 2018 Jan; 16(1):e2003446. PubMed ID: 29315309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate change negates positive CO
    Ullah H; Fordham DA; Nagelkerken I
    Sci Total Environ; 2021 Dec; 801():149624. PubMed ID: 34419906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.