These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 30225180)

  • 1. Maxent estimation of aquatic
    Gilfillan D; Joyner TA; Scheuerman P
    PeerJ; 2018; 6():e5610. PubMed ID: 30225180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial source tracking (MST) in Chattahoochee River National Recreation Area: Seasonal and precipitation trends in MST marker concentrations, and associations with E. coli levels, pathogenic marker presence, and land use.
    McKee BA; Molina M; Cyterski M; Couch A
    Water Res; 2020 Mar; 171():115435. PubMed ID: 31927096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detangling Seasonal Relationships of Fecal Contamination Sources and Correlates with Indicators in Michigan Watersheds.
    Wilson AM; Martin SL; Verhougstraete MP; Kendall AD; Zimmer-Faust AG; Rose JB; Bell ML; Hyndman DW
    Microbiol Spectr; 2022 Aug; 10(4):e0041522. PubMed ID: 35730960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Fecal Indicator Bacteria Using Spatial Stream Network Models in A Mixed-Land-Use Suburban Watershed in New Jersey, USA.
    Hsu TD; Yu D; Wu M
    Int J Environ Res Public Health; 2023 Mar; 20(6):. PubMed ID: 36981647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of a multivariate analysis modeling approach identifying sources and patterns of nonpoint fecal pollution in a mixed use watershed.
    Reitz A; Hemric E; Hall KK
    J Environ Manage; 2021 Jan; 277():111413. PubMed ID: 33035938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Canonical Variable Selection for Ecological Modeling of Fecal Indicators.
    Gilfillan D; Hall K; Joyner TA; Scheuerman P
    J Environ Qual; 2018 Sep; 47(5):974-984. PubMed ID: 30272784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using SWAT, Bacteroidales microbial source tracking markers, and fecal indicator bacteria to predict waterborne pathogen occurrence in an agricultural watershed.
    Frey SK; Topp E; Edge T; Fall C; Gannon V; Jokinen C; Marti R; Neumann N; Ruecker N; Wilkes G; Lapen DR
    Water Res; 2013 Oct; 47(16):6326-37. PubMed ID: 24079968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical assessment of nonpoint source pollution in agricultural watersheds in the Lower Grand River watershed, MO, USA.
    Jabbar FK; Grote K
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1487-1506. PubMed ID: 30430446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Storm sampling to assess inclement weather impacts on water quality in a karst watershed: Sinking Creek, Watauga watershed, East Tennessee.
    McCurdy P; Luffman I; Joyner TA; Maier K
    J Environ Qual; 2021 Mar; 50(2):429-440. PubMed ID: 33410534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling a continuous watershed-scale microbial fate and transport model with a stochastic dose-response model to estimate risk of illness in an urban watershed.
    Liao H; Krometis LA; Kline K
    Sci Total Environ; 2016 May; 551-552():668-75. PubMed ID: 26897410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidating Waterborne Pathogen Presence and Aiding Source Apportionment in an Impaired Stream.
    Weidhaas J; Anderson A; Jamal R
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29305503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry.
    Ritter L; Solomon K; Sibley P; Hall K; Keen P; Mattu G; Linton B
    J Toxicol Environ Health A; 2002 Jan; 65(1):1-142. PubMed ID: 11809004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental risk assessment for fecal contamination sources in urban and peri-urban estuaries, in Escambia and Santa Rosa counties, FL, USA.
    Bridgemohan RSH; Deitch MJ; Gebremicael T; Whiles MR; Wilson PC; Bachoon D; Tharpe I
    Environ Monit Assess; 2023 Jun; 195(7):867. PubMed ID: 37341799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of land use and water quality in an agricultural watershed in the USA indicates multiple sources of bacterial impairment.
    Wittman J; Weckwerth A; Weiss C; Heyer S; Seibert J; Kuennen B; Ingels C; Seigley L; Larsen K; Enos-Berlage J
    Environ Monit Assess; 2013 Dec; 185(12):10395-420. PubMed ID: 23873513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatially explicit pollutant load-integrated in-stream E. coli concentration modeling in a mixed land-use catchment.
    Thilakarathne M; Sridhar V; Karthikeyan R
    Water Res; 2018 Nov; 144():87-103. PubMed ID: 30014982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrological modeling of Fecal Indicator Bacteria in a tropical mountain catchment.
    Kim M; Boithias L; Cho KH; Silvera N; Thammahacksa C; Latsachack K; Rochelle-Newall E; Sengtaheuanghoung O; Pierret A; Pachepsky YA; Ribolzi O
    Water Res; 2017 Aug; 119():102-113. PubMed ID: 28436821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathogen transport and fate modeling in the Upper Salem River Watershed using SWAT model.
    Niazi M; Obropta C; Miskewitz R
    J Environ Manage; 2015 Mar; 151():167-77. PubMed ID: 25576694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of recreational water safety using Escherichia coli as an indicator: case study of the Passaic and Pompton rivers, New Jersey.
    Rossi A; Wolde BT; Lee LH; Wu M
    Sci Total Environ; 2020 Apr; 714():136814. PubMed ID: 32018971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contamination with bacterial zoonotic pathogen genes in U.S. streams influenced by varying types of animal agriculture.
    Haack SK; Duris JW; Kolpin DW; Focazio MJ; Meyer MT; Johnson HE; Oster RJ; Foreman WT
    Sci Total Environ; 2016 Sep; 563-564():340-50. PubMed ID: 27139306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.