BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30225393)

  • 1. Overall success rate of a safe and efficacious drug: Results using six phase 1 designs, each followed by standard phase 2 and 3 designs.
    Ruppert AS; Shoben AB
    Contemp Clin Trials Commun; 2018 Dec; 12():40-50. PubMed ID: 30225393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic comparison of the statistical operating characteristics of various Phase I oncology designs.
    Ananthakrishnan R; Green S; Chang M; Doros G; Massaro J; LaValley M
    Contemp Clin Trials Commun; 2017 Mar; 5():34-48. PubMed ID: 29740620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy, Safety, and Reliability of Novel Phase I Trial Designs.
    Zhou H; Yuan Y; Nie L
    Clin Cancer Res; 2018 Sep; 24(18):4357-4364. PubMed ID: 29661774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of toxicity probability interval based designs in contrast to the continual reassessment method.
    Horton BJ; Wages NA; Conaway MR
    Stat Med; 2017 Jan; 36(2):291-300. PubMed ID: 27435150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-to-Event Bayesian Optimal Interval Design to Accelerate Phase I Trials.
    Yuan Y; Lin R; Li D; Nie L; Warren KE
    Clin Cancer Res; 2018 Oct; 24(20):4921-4930. PubMed ID: 29769209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian Optimal Interval Design: A Simple and Well-Performing Design for Phase I Oncology Trials.
    Yuan Y; Hess KR; Hilsenbeck SG; Gilbert MR
    Clin Cancer Res; 2016 Sep; 22(17):4291-301. PubMed ID: 27407096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An overview of the BOIN design and its current extensions for novel early-phase oncology trials.
    Ananthakrishnan R; Lin R; He C; Chen Y; Li D; LaValley M
    Contemp Clin Trials Commun; 2022 Aug; 28():100943. PubMed ID: 35812822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive comparison of the continual reassessment method to the standard 3 + 3 dose escalation scheme in Phase I dose-finding studies.
    Iasonos A; Wilton AS; Riedel ER; Seshan VE; Spriggs DR
    Clin Trials; 2008; 5(5):465-77. PubMed ID: 18827039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An evaluation of phase I cancer clinical trial designs.
    Ahn C
    Stat Med; 1998 Jul; 17(14):1537-49. PubMed ID: 9699228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the effects of design parameters on the performances of phase I trial designs.
    Zhu Y; Hwang WT; Li Y
    Contemp Clin Trials Commun; 2019 Sep; 15():100379. PubMed ID: 31193764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extensions of the mTPI and TEQR designs to include non-monotone efficacy in addition to toxicity for optimal dose determination for early phase immunotherapy oncology trials.
    Ananthakrishnan R; Green S; Li D; LaValley M
    Contemp Clin Trials Commun; 2018 Jun; 10():62-76. PubMed ID: 29696160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small-sample behavior of novel phase I cancer trial designs.
    Oron AP; Hoff PD
    Clin Trials; 2013 Feb; 10(1):63-80. PubMed ID: 23345304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-guided determination of maximum tolerated dose in phase I clinical trials: evidence for increased precision.
    Mick R; Ratain MJ
    J Natl Cancer Inst; 1993 Feb; 85(3):217-23. PubMed ID: 8423626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the relative efficiency of model-assisted designs: a conditional approach.
    Lin R; Yuan Y
    J Biopharm Stat; 2019; 29(4):648-662. PubMed ID: 31258039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative study of Bayesian optimal interval (BOIN) design with interval 3+3 (i3+3) design for phase I oncology dose-finding trials.
    Zhou Y; Li R; Yan F; Lee JJ; Yuan Y
    Stat Biopharm Res; 2021; 13(2):147-155. PubMed ID: 34249223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An evaluation of phase I clinical trial designs in the continuous dose-response setting.
    Storer BE
    Stat Med; 2001 Aug; 20(16):2399-408. PubMed ID: 11512130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A statistical evaluation of dose expansion cohorts in phase I clinical trials.
    Boonstra PS; Shen J; Taylor JM; Braun TM; Griffith KA; Daignault S; Kalemkerian GP; Lawrence TS; Schipper MJ
    J Natl Cancer Inst; 2015 Mar; 107(3):. PubMed ID: 25710960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contemporary dose-escalation methods for early phase studies in the immunotherapeutics era.
    Araujo DV; Oliva M; Li K; Fazelzad R; Liu ZA; Siu LL
    Eur J Cancer; 2021 Oct; 158():85-98. PubMed ID: 34656816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BOIN: a novel Bayesian design platform to accelerate early phase brain tumor clinical trials.
    Yuan Y; Wu J; Gilbert MR
    Neurooncol Pract; 2021 Dec; 8(6):627-638. PubMed ID: 34777832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A practical Bayesian design to identify the maximum tolerated dose contour for drug combination trials.
    Zhang L; Yuan Y
    Stat Med; 2016 Nov; 35(27):4924-4936. PubMed ID: 27580928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.