These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 30225490)

  • 21. Insights into the Molecular Mechanisms of Alzheimer's and Parkinson's Diseases with Molecular Simulations: Understanding the Roles of Artificial and Pathological Missense Mutations in Intrinsically Disordered Proteins Related to Pathology.
    Coskuner-Weber O; Uversky VN
    Int J Mol Sci; 2018 Jan; 19(2):. PubMed ID: 29364151
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of Gold Nanospheres and Nanocubes on Amyloid-β Peptide Fibrillation.
    Wang W; Han Y; Fan Y; Wang Y
    Langmuir; 2019 Feb; 35(6):2334-2342. PubMed ID: 30636427
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Template-assisted lateral growth of amyloid-β42 fibrils studied by differential labeling with gold nanoparticles.
    Arimon M; Sanz F; Giralt E; Carulla N
    Bioconjug Chem; 2012 Jan; 23(1):27-32. PubMed ID: 22129071
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Zinc as chaperone-mimicking agent for retardation of amyloid β peptide fibril formation.
    Abelein A; Gräslund A; Danielsson J
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5407-12. PubMed ID: 25825723
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding Amyloid-β Oligomerization at the Molecular Level: The Role of the Fibril Surface.
    Barz B; Strodel B
    Chemistry; 2016 Jun; 22(26):8768-72. PubMed ID: 27135646
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Noninvasive label-free nanoplasmonic optical imaging for real-time monitoring of in vitro amyloid fibrogenesis.
    Lee SS; Lee LP
    Nanoscale; 2014 Apr; 6(7):3561-5. PubMed ID: 24598888
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gold nanoparticles as amyloid-like fibrillogenesis inhibitors.
    Hsieh S; Chang CW; Chou HH
    Colloids Surf B Biointerfaces; 2013 Dec; 112():525-9. PubMed ID: 24060166
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amyloid-β aggregation with gold nanoparticles on brain lipid bilayer.
    Lee H; Kim Y; Park A; Nam JM
    Small; 2014 May; 10(9):1779-89. PubMed ID: 24664514
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Naked-eye detection of amyloid aggregates using gold nanoparticles modified with amyloid beta antibody.
    Sakono M; Zako T; Maeda M
    Anal Sci; 2012; 28(1):73. PubMed ID: 22232229
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural studies of amyloid-β peptides: Unlocking the mechanism of aggregation and the associated toxicity.
    Aleksis R; Oleskovs F; Jaudzems K; Pahnke J; Biverstål H
    Biochimie; 2017 Sep; 140():176-192. PubMed ID: 28751216
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Peptide Self-Assembly into Amyloid Fibrils at Hard and Soft Interfaces-From Corona Formation to Membrane Activity.
    John T; Martin LL; Abel B
    Macromol Biosci; 2023 Jun; 23(6):e2200576. PubMed ID: 36810963
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biochemical stages of amyloid-β peptide aggregation and accumulation in the human brain and their association with symptomatic and pathologically preclinical Alzheimer's disease.
    Rijal Upadhaya A; Kosterin I; Kumar S; von Arnim CA; Yamaguchi H; Fändrich M; Walter J; Thal DR
    Brain; 2014 Mar; 137(Pt 3):887-903. PubMed ID: 24519982
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gold-Induced Fibril Growth: The Mechanism of Surface-Facilitated Amyloid Aggregation.
    Gladytz A; Abel B; Risselada HJ
    Angew Chem Int Ed Engl; 2016 Sep; 55(37):11242-6. PubMed ID: 27513605
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular Dynamics Study on the Inhibition Mechanisms of Drugs CQ1-3 for Alzheimer Amyloid-β40 Aggregation Induced by Cu(2.).
    Dong M; Li H; Hu D; Zhao W; Zhu X; Ai H
    ACS Chem Neurosci; 2016 May; 7(5):599-614. PubMed ID: 26871000
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nucleation process of a fibril precursor in the C-terminal segment of amyloid-β.
    Baftizadeh F; Pietrucci F; Biarnés X; Laio A
    Phys Rev Lett; 2013 Apr; 110(16):168103. PubMed ID: 23679641
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanoparticles in relation to peptide and protein aggregation.
    Zaman M; Ahmad E; Qadeer A; Rabbani G; Khan RH
    Int J Nanomedicine; 2014; 9():899-912. PubMed ID: 24611007
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gold nanoparticle based dot-blot immunoassay for sensitively detecting Alzheimer's disease related β-amyloid peptide.
    Wang C; Liu D; Wang Z
    Chem Commun (Camb); 2012 Aug; 48(67):8392-4. PubMed ID: 22796866
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ionic Strength Modulation of the Free Energy Landscape of Aβ40 Peptide Fibril Formation.
    Abelein A; Jarvet J; Barth A; Gräslund A; Danielsson J
    J Am Chem Soc; 2016 Jun; 138(21):6893-902. PubMed ID: 27171340
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of the surface charge of artificial model membranes on the aggregation of amyloid β-peptide.
    Sabaté R; Espargaró A; Barbosa-Barros L; Ventura S; Estelrich J
    Biochimie; 2012 Aug; 94(8):1730-8. PubMed ID: 22542639
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.