These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 30225509)

  • 1. Towards organogenesis and morphogenesis in vitro: harnessing engineered microenvironment and autonomous behaviors of pluripotent stem cells.
    Li N; Xie T; Sun Y
    Integr Biol (Camb); 2018 Oct; 10(10):574-586. PubMed ID: 30225509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioengineering tissue morphogenesis and function in human neural organoids.
    Fedorchak NJ; Iyer N; Ashton RS
    Semin Cell Dev Biol; 2021 Mar; 111():52-59. PubMed ID: 32540123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioengineering approaches to guide stem cell-based organogenesis.
    Gjorevski N; Ranga A; Lutolf MP
    Development; 2014 May; 141(9):1794-804. PubMed ID: 24757002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro organogenesis from pluripotent stem cells.
    Li Y; Xu C; Ma T
    Organogenesis; 2014; 10(2):159-63. PubMed ID: 24762764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On human pluripotent stem cell control: The rise of 3D bioengineering and mechanobiology.
    Shao Y; Sang J; Fu J
    Biomaterials; 2015 Jun; 52():26-43. PubMed ID: 25818411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of human multipotent and pluripotent stem cells using surface nanotopographies and surface-immobilised bioactive signals: A review.
    Wang PY; Thissen H; Kingshott P
    Acta Biomater; 2016 Nov; 45():31-59. PubMed ID: 27596488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen Regulation in Development: Lessons from Embryogenesis towards Tissue Engineering.
    Fathollahipour S; Patil PS; Leipzig ND
    Cells Tissues Organs; 2018; 205(5-6):350-371. PubMed ID: 30273927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epithelial morphogenesis of germline-derived pluripotent stem cells on organotypic skin equivalents in vitro.
    van de Kamp J; Kramann R; Anraths J; Schöler HR; Ko K; Knüchel R; Zenke M; Neuss S; Schneider RK
    Differentiation; 2012 Mar; 83(3):138-47. PubMed ID: 22364881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grow with the Flow: When Morphogenesis Meets Microfluidics.
    Samal P; van Blitterswijk C; Truckenmüller R; Giselbrecht S
    Adv Mater; 2019 Apr; 31(17):e1805764. PubMed ID: 30767289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-organizing models of human trunk organogenesis recapitulate spinal cord and spine co-morphogenesis.
    Gribaudo S; Robert R; van Sambeek B; Mirdass C; Lyubimova A; Bouhali K; Ferent J; Morin X; van Oudenaarden A; Nedelec S
    Nat Biotechnol; 2024 Aug; 42(8):1243-1253. PubMed ID: 37709912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reverse engineering the mechanical and molecular pathways in stem cell morphogenesis.
    Lu K; Gordon R; Cao T
    J Tissue Eng Regen Med; 2015 Mar; 9(3):169-73. PubMed ID: 23319467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioengineering in vitro models of embryonic development.
    Gupta A; Lutolf MP; Hughes AJ; Sonnen KF
    Stem Cell Reports; 2021 May; 16(5):1104-1116. PubMed ID: 33979597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic systems: a new toolbox for pluripotent stem cells.
    Lesher-Perez SC; Frampton JP; Takayama S
    Biotechnol J; 2013 Feb; 8(2):180-91. PubMed ID: 23125055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling human development in 3D culture.
    Ader M; Tanaka EM
    Curr Opin Cell Biol; 2014 Dec; 31():23-8. PubMed ID: 25033469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generating a self-organizing kidney from pluripotent cells.
    Little MH; Takasato M
    Curr Opin Organ Transplant; 2015 Apr; 20(2):178-86. PubMed ID: 25856180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineered signaling centers for the spatially controlled patterning of human pluripotent stem cells.
    Manfrin A; Tabata Y; Paquet ER; Vuaridel AR; Rivest FR; Naef F; Lutolf MP
    Nat Methods; 2019 Jul; 16(7):640-648. PubMed ID: 31249412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stem Cell-Based Embryo Models: En Route to a Programmable Future.
    Chen Y; Shao Y
    J Mol Biol; 2022 Feb; 434(3):167353. PubMed ID: 34774563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MMP-mediated mesenchymal morphogenesis of pluripotent stem cell aggregates stimulated by gelatin methacrylate microparticle incorporation.
    Nguyen AH; Wang Y; White DE; Platt MO; McDevitt TC
    Biomaterials; 2016 Jan; 76():66-75. PubMed ID: 26519649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A semi-interpenetrating network of polyacrylamide and recombinant basement membrane allows pluripotent cell culture in a soft, ligand-rich microenvironment.
    Price AJ; Huang EY; Sebastiano V; Dunn AR
    Biomaterials; 2017 Mar; 121():179-192. PubMed ID: 28088685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pluripotent stem cells and their niches.
    Lensch MW; Daheron L; Schlaeger TM
    Stem Cell Rev; 2006; 2(3):185-201. PubMed ID: 17625255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.