BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30225517)

  • 1. Evolutionarily conserved coding properties favour the neuronal representation of heterospecific signals of a sympatric katydid species.
    Kostarakos K; Römer H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 Oct; 204(9-10):859-872. PubMed ID: 30225517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maintaining acoustic communication at a cocktail party: heterospecific masking noise improves signal detection through frequency separation.
    Siegert ME; Römer H; Hartbauer M
    J Exp Biol; 2013 Dec; 216(Pt 24):4655-65. PubMed ID: 24307713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural Mechanisms for Acoustic Signal Detection under Strong Masking in an Insect.
    Kostarakos K; Römer H
    J Neurosci; 2015 Jul; 35(29):10562-71. PubMed ID: 26203150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The heterospecific calling song can improve conspecific signal detection in a bushcricket species.
    Abdelatti ZAS; Hartbauer M
    Hear Res; 2017 Nov; 355():70-80. PubMed ID: 28974384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic signal perception in a noisy habitat: lessons from synchronising insects.
    Hartbauer M; Siegert ME; Fertschai I; Römer H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Jun; 198(6):397-409. PubMed ID: 22427234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reproductive isolation in the acoustically divergent groups of tettigoniid, Mecopoda elongata.
    Dutta R; Tregenza T; Balakrishnan R
    PLoS One; 2017; 12(11):e0188843. PubMed ID: 29182676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial Mixing between Calling Males of Two Closely Related, Sympatric Crickets Suggests Beneficial Heterospecific Interactions in a NonAdaptive Radiation.
    Xu M; Shaw KL
    J Hered; 2020 Feb; 111(1):84-91. PubMed ID: 31782960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Listening in the bog: II. Neural correlates for acoustic interactions and spacing between Sphagniana sphagnorum males.
    Kostarakos K; Römer H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 Apr; 204(4):353-367. PubMed ID: 29460143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective processing of calling songs by auditory interneurons in the female cricket, Gryllus pennsylvanicus: possible roles in behavior.
    Jeffery J; Navia B; Atkins G; Stout J
    J Exp Zool A Comp Exp Biol; 2005 May; 303(5):377-92. PubMed ID: 15828009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A statistical approach to understanding reproductive isolation in two sympatric species of tree crickets.
    Bhattacharya M; Isvaran K; Balakrishnan R
    J Exp Biol; 2017 Apr; 220(Pt 7):1222-1232. PubMed ID: 28096428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prolonged response to calling songs by the L3 auditory interneuron in female crickets (Acheta domesticus): possible roles in regulating phonotactic threshold and selectiveness for call carrier frequency.
    Bronsert M; Bingol H; Atkins G; Stout J
    J Exp Zool A Comp Exp Biol; 2003 Mar; 296(1):72-85. PubMed ID: 12589693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of cricket stridulation by a command neuron: efficacy depends on the behavioral state.
    Hedwig B
    J Neurophysiol; 2000 Feb; 83(2):712-22. PubMed ID: 10669487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How females of chirping and trilling field crickets integrate the 'what' and 'where' of male acoustic signals during decision making.
    Gabel E; Gray DA; Matthias Hennig R
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 Nov; 202(11):823-837. PubMed ID: 27638304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phonotaxis in flying crickets. II. Physiological mechanisms of two-tone suppression of the high frequency avoidance steering behavior by the calling song.
    Nolen TG; Hoy RR
    J Comp Physiol A; 1986 Oct; 159(4):441-56. PubMed ID: 3783497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensory ecology of predator-prey interactions: responses of the AN2 interneuron in the field cricket, Teleogryllus oceanicus to the echolocation calls of sympatric bats.
    Fullard JH; Ratcliffe JM; Guignion C
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jul; 191(7):605-18. PubMed ID: 15886992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing real sensory worlds of receivers with unsupervised clustering.
    Pfeiffer M; Hartbauer M; Lang AB; Maass W; Römer H
    PLoS One; 2012; 7(6):e37354. PubMed ID: 22701566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modular timer networks: abdominal interneurons controlling the chirp and pulse pattern in a cricket calling song.
    Jacob PF; Hedwig B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2020 Nov; 206(6):921-938. PubMed ID: 33089402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure, Activity and Function of a Singing CPG Interneuron Controlling Cricket Species-Specific Acoustic Signaling.
    Jacob PF; Hedwig B
    J Neurosci; 2019 Jan; 39(1):96-111. PubMed ID: 30396914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divergence in the calling songs between sympatric and allopatric populations of the southern wood cricket Gryllus fultoni (Orthoptera: Gryllidae).
    Jang Y; Gerhardt HC
    J Evol Biol; 2006 Mar; 19(2):459-72. PubMed ID: 16599922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition of variable courtship song in the field cricket Gryllus assimilis.
    Vedenina VY; Pollack GS
    J Exp Biol; 2012 Jul; 215(Pt 13):2210-9. PubMed ID: 22675181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.