BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 30225568)

  • 21. Tannic acid functionalized N-doped graphene modified glassy carbon electrode for the determination of bisphenol A in food package.
    Jiao S; Jin J; Wang L
    Talanta; 2014 May; 122():140-4. PubMed ID: 24720975
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biosensor design using an electroactive label-based aptamer to detect bisphenol A in serum samples.
    Nazari M; Kashanian S; Rafipour R; Omidfar K
    J Biosci; 2019 Sep; 44(4):. PubMed ID: 31502582
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel impedimetric aptasensor, based on functionalized carbon nanotubes and prussian blue as labels.
    Azadbakht A; Roushani M; Abbasi AR; Derikvand Z
    Anal Biochem; 2016 Nov; 512():58-69. PubMed ID: 27515992
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A ratiometric electrochemiluminescent immunoassay for calcitonin by using N-(aminobutyl)-N-(ethylisoluminol) and graphite-like carbon nitride.
    Zhang C; Liu D; Zhang H; Tan X; Chen S
    Mikrochim Acta; 2019 Nov; 186(12):771. PubMed ID: 31720853
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photoelectrochemical aptamer-based sensing of the vascular endothelial growth factor by adjusting the light harvesting efficiency of g-C
    Liu YL; Da HM; Chai YQ; Yuan R; Liu HY
    Mikrochim Acta; 2019 Apr; 186(5):275. PubMed ID: 30969367
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A sensitive aptasensor based on molybdenum carbide nanotubes and label-free aptamer for detection of bisphenol A.
    He MQ; Wang K; Wang J; Yu YL; He RH
    Anal Bioanal Chem; 2017 Mar; 409(7):1797-1803. PubMed ID: 27981340
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A portable optic fiber aptasensor for sensitive, specific and rapid detection of bisphenol-A in water samples.
    Yildirim N; Long F; He M; Shi HC; Gu AZ
    Environ Sci Process Impacts; 2014 May; 16(6):1379-86. PubMed ID: 24788953
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel electrochemical aptasensor for bisphenol A assay based on triple-signaling strategy.
    Yu P; Liu Y; Zhang X; Zhou J; Xiong E; Li X; Chen J
    Biosens Bioelectron; 2016 May; 79():22-8. PubMed ID: 26686919
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High affinity truncated aptamers for ultra-sensitive colorimetric detection of bisphenol A with label-free aptasensor.
    Jia M; Sha J; Li Z; Wang W; Zhang H
    Food Chem; 2020 Jul; 317():126459. PubMed ID: 32113141
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An electrochemiluminescence aptasensor based on Ru(bpy)
    Li J; Shan X; Jiang D; Wang W; Chen Z
    Mikrochim Acta; 2020 Mar; 187(4):227. PubMed ID: 32170403
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simple and rapid detection of bisphenol A using a gold nanoparticle-based colorimetric aptasensor.
    Lee EH; Lee SK; Kim MJ; Lee SW
    Food Chem; 2019 Jul; 287():205-213. PubMed ID: 30857691
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anodic electrogenerated chemiluminescence behavior of graphite-like carbon nitride and its sensing for rutin.
    Cheng C; Huang Y; Wang J; Zheng B; Yuan H; Xiao D
    Anal Chem; 2013 Mar; 85(5):2601-5. PubMed ID: 23373468
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A colorimetric mercury(II) assay based on the Hg(II)-stimulated peroxidase mimicking activity of a nanocomposite prepared from graphitic carbon nitride and gold nanoparticles.
    Wang YW; Liu Q; Wang L; Tang S; Yang HH; Song H
    Mikrochim Acta; 2018 Dec; 186(1):7. PubMed ID: 30535761
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel electrochemiluminescence sensor based on Ru(bpy)₃²⁺/N-doped carbon nanodots system for the detection of bisphenol A.
    Li L; Yu B; Zhang X; You T
    Anal Chim Acta; 2015 Oct; 895():104-11. PubMed ID: 26454465
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synergic effect of silver nanoparticles and carbon nanotubes on the simultaneous voltammetric determination of hydroquinone, catechol, bisphenol A and phenol.
    Goulart LA; Gonçalves R; Correa AA; Pereira EC; Mascaro LH
    Mikrochim Acta; 2017 Dec; 185(1):12. PubMed ID: 29594601
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A photoelectrochemical aptasensor for the determination of bisphenol A based on the Cu (I) modified graphitic carbon nitride.
    Xu L; Duan W; Chen F; Zhang J; Li H
    J Hazard Mater; 2020 Dec; 400():123162. PubMed ID: 32563909
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Upconversion fluorescent aptasensor for bisphenol A and 17β-estradiol based on a nanohybrid composed of black phosphorus and gold, and making use of signal amplification via DNA tetrahedrons.
    Ren S; Li Q; Li Y; Li S; Han T; Wang J; Peng Y; Bai J; Ning B; Gao Z
    Mikrochim Acta; 2019 Feb; 186(3):151. PubMed ID: 30712105
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Graphitic carbon nitride nanosheets: one-step, high-yield synthesis and application for Cu2+ detection.
    Cheng N; Jiang P; Liu Q; Tian J; Asiri AM; Sun X
    Analyst; 2014 Oct; 139(20):5065-8. PubMed ID: 25134657
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An electrochemical aptasensor based on gold nanoparticles dotted graphene modified glassy carbon electrode for label-free detection of bisphenol A in milk samples.
    Zhou L; Wang J; Li D; Li Y
    Food Chem; 2014 Nov; 162():34-40. PubMed ID: 24874354
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sonophotocatalytic degradation of bisphenol A and its intermediates with graphitic carbon nitride.
    Sunasee S; Leong KH; Wong KT; Lee G; Pichiah S; Nah I; Jeon BH; Yoon Y; Jang M
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1082-1093. PubMed ID: 28290089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.