These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 30225863)
1. Improved discrimination between normal-tension and primary open-angle glaucoma with advanced vascular examinations - the Leuven Eye Study. Barbosa-Breda J; Van Keer K; Abegão-Pinto L; Nassiri V; Molenberghs G; Willekens K; Vandewalle E; Rocha-Sousa A; Stalmans I Acta Ophthalmol; 2019 Feb; 97(1):e50-e56. PubMed ID: 30225863 [TBL] [Abstract][Full Text] [Related]
2. Comparison of macular ganglion cell complex thickness by Fourier-domain OCT in normal tension glaucoma and primary open-angle glaucoma. Kim NR; Hong S; Kim JH; Rho SS; Seong GJ; Kim CY J Glaucoma; 2013 Feb; 22(2):133-9. PubMed ID: 21701394 [TBL] [Abstract][Full Text] [Related]
3. Comparison of retinal nerve fiber layer and macular thickness for discriminating primary open-angle glaucoma and normal-tension glaucoma using optical coherence tomography. Khanal S; Davey PG; Racette L; Thapa M Clin Exp Optom; 2016 Jul; 99(4):373-81. PubMed ID: 26996257 [TBL] [Abstract][Full Text] [Related]
4. Ocular blood flow in glaucoma - the Leuven Eye Study. Abegão Pinto L; Willekens K; Van Keer K; Shibesh A; Molenberghs G; Vandewalle E; Stalmans I Acta Ophthalmol; 2016 Sep; 94(6):592-8. PubMed ID: 26895610 [TBL] [Abstract][Full Text] [Related]
5. Diagnostic capability of lamina cribrosa thickness by enhanced depth imaging and factors affecting thickness in patients with glaucoma. Park HY; Park CK Ophthalmology; 2013 Apr; 120(4):745-52. PubMed ID: 23260259 [TBL] [Abstract][Full Text] [Related]
7. Lack of spontaneous venous pulsation: possible risk indicator in normal tension glaucoma? Abegão Pinto L; Vandewalle E; De Clerck E; Marques-Neves C; Stalmans I Acta Ophthalmol; 2013 Sep; 91(6):514-20. PubMed ID: 22776135 [TBL] [Abstract][Full Text] [Related]
8. Value of Structural and Hemodynamic Parameters for the Early Detection of Primary Open-Angle Glaucoma. Kurysheva NI; Parshunina OA; Shatalova EO; Kiseleva TN; Lagutin MB; Fomin AV Curr Eye Res; 2017 Mar; 42(3):411-417. PubMed ID: 27341295 [TBL] [Abstract][Full Text] [Related]
9. Projection-Resolved Optical Coherence Tomography Angiography of Macular Retinal Circulation in Glaucoma. Takusagawa HL; Liu L; Ma KN; Jia Y; Gao SS; Zhang M; Edmunds B; Parikh M; Tehrani S; Morrison JC; Huang D Ophthalmology; 2017 Nov; 124(11):1589-1599. PubMed ID: 28676279 [TBL] [Abstract][Full Text] [Related]
10. Funduscopic versus HRT III Confocal Scanner Vertical Cup-Disc Ratio Assessment in Normal Tension and Primary Open Angle Glaucoma (The Leuven Eye Study). Willekens K; Bataillie S; Sarens I; Odent S; Abegão Pinto L; Vandewalle E; Van Keer K; Stalmans I Ophthalmic Res; 2017; 57(2):100-106. PubMed ID: 27487343 [TBL] [Abstract][Full Text] [Related]
11. Comparison of retinal microvascular changes in eyes with high-tension glaucoma or normal-tension glaucoma: a quantitative optic coherence tomography angiographic study. Xu H; Zhai R; Zong Y; Kong X; Jiang C; Sun X; He Y; Li X Graefes Arch Clin Exp Ophthalmol; 2018 Jun; 256(6):1179-1186. PubMed ID: 29450622 [TBL] [Abstract][Full Text] [Related]
12. Change in retinal blood flow and retinal arterial diameter after intraocular pressure reduction in glaucomatous eyes. Kurvinen L; Kytö JP; Summanen P; Vesti E; Harju M Acta Ophthalmol; 2014 Sep; 92(6):507-12. PubMed ID: 24020979 [TBL] [Abstract][Full Text] [Related]
13. Retinal blood flow reduction in normal-tension glaucoma with single-hemifield damage by Doppler optical coherence tomography. Yoshioka T; Song Y; Kawai M; Tani T; Takahashi K; Ishiko S; Lavinsky F; Wollstein G; Ishikawa H; Schuman JS; Yoshida A Br J Ophthalmol; 2021 Jan; 105(1):124-130. PubMed ID: 32217540 [TBL] [Abstract][Full Text] [Related]
14. Macular and peripapillary retinal nerve fiber layer measurements by spectral domain optical coherence tomography in normal-tension glaucoma. Seong M; Sung KR; Choi EH; Kang SY; Cho JW; Um TW; Kim YJ; Park SB; Hong HE; Kook MS Invest Ophthalmol Vis Sci; 2010 Mar; 51(3):1446-52. PubMed ID: 19834029 [TBL] [Abstract][Full Text] [Related]
16. Differences in corneal parameters between normal tension glaucoma and primary open-angle glaucoma. Lee JW; Wong RL; Chan JC; Wong IY; Lai JS Int Ophthalmol; 2015 Feb; 35(1):67-72. PubMed ID: 25421917 [TBL] [Abstract][Full Text] [Related]
17. Ophthalmic artery Doppler waveform changes associated with increased damage in glaucoma patients. Abegão Pinto L; Vandewalle E; De Clerck E; Marques-Neves C; Stalmans I Invest Ophthalmol Vis Sci; 2012 Apr; 53(4):2448-53. PubMed ID: 22427555 [TBL] [Abstract][Full Text] [Related]
18. Variations in optic nerve head morphology by intraocular pressure in open-angle glaucoma. Wong A; Matheos K; Prime Z; Danesh-Meyer HV Graefes Arch Clin Exp Ophthalmol; 2017 Nov; 255(11):2219-2226. PubMed ID: 28875349 [TBL] [Abstract][Full Text] [Related]
19. Central retinal vascular trunk deviation in unilateral normal-tension glaucoma. Choung HK; Kim M; Oh S; Lee KM; Kim SH PLoS One; 2021; 16(7):e0254889. PubMed ID: 34283884 [TBL] [Abstract][Full Text] [Related]
20. Patients With Normal Tension Glaucoma Have Relative Sparing of the Relative Afferent Pupillary Defect Compared to Those With Open Angle Glaucoma and Elevated Intraocular Pressure. Lawlor M; Quartilho A; Bunce C; Nathwani N; Dowse E; Kamal D; Gazzard G Invest Ophthalmol Vis Sci; 2017 Oct; 58(12):5237-5241. PubMed ID: 29049724 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]