These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 30225894)

  • 1. Strategies Towards Capturing Nitrogenase Substrates and Intermediates via Controlled Alteration of Electron Fluxes.
    Hiller CJ; Lee CC; Stiebritz MT; Rettberg LA; Hu Y
    Chemistry; 2019 Feb; 25(10):2389-2395. PubMed ID: 30225894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactivity of [Fe
    Lee CC; Stiebritz MT; Hu Y
    Acc Chem Res; 2019 May; 52(5):1168-1176. PubMed ID: 30977994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning Electron Flux through Nitrogenase with Methanogen Iron Protein Homologues.
    Hiller CJ; Stiebritz MT; Lee CC; Liedtke J; Hu Y
    Chemistry; 2017 Nov; 23(64):16152-16156. PubMed ID: 28984391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the Catalytic Relevance of the CO-Bound States of V-Nitrogenase.
    Lee CC; Wilcoxen J; Hiller CJ; Britt RD; Hu Y
    Angew Chem Int Ed Engl; 2018 Mar; 57(13):3411-3414. PubMed ID: 29409145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncoupling binding of substrate CO from turnover by vanadium nitrogenase.
    Lee CC; Fay AW; Weng TC; Krest CM; Hedman B; Hodgson KO; Hu Y; Ribbe MW
    Proc Natl Acad Sci U S A; 2015 Nov; 112(45):13845-9. PubMed ID: 26515097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron inventory, kinetic assignment (E(n)), structure, and bonding of nitrogenase turnover intermediates with C2H2 and CO.
    Lee HI; Sørlie M; Christiansen J; Yang TC; Shao J; Dean DR; Hales BJ; Hoffman BM
    J Am Chem Soc; 2005 Nov; 127(45):15880-90. PubMed ID: 16277531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects on substrate reduction of substitution of histidine-195 by glutamine in the alpha-subunit of the MoFe protein of Azotobacter vinelandii nitrogenase.
    Dilworth MJ; Fisher K; Kim CH; Newton WE
    Biochemistry; 1998 Dec; 37(50):17495-505. PubMed ID: 9860864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Connecting nitrogenase intermediates with the kinetic scheme for N2 reduction by a relaxation protocol and identification of the N2 binding state.
    Lukoyanov D; Barney BM; Dean DR; Seefeldt LC; Hoffman BM
    Proc Natl Acad Sci U S A; 2007 Jan; 104(5):1451-5. PubMed ID: 17251348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiation of acetylene-reduction sites by stereoselective proton addition during Azotobacter vinelandii nitrogenase-catalyzed C2D2 reduction.
    Han J; Newton WE
    Biochemistry; 2004 Mar; 43(10):2947-56. PubMed ID: 15005631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into hydrocarbon formation by nitrogenase cofactor homologs.
    Lee CC; Hu Y; Ribbe MW
    mBio; 2015 Apr; 6(2):. PubMed ID: 25873377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of CO binding and release from Mo-nitrogenase during catalytic turnover.
    Cameron LM; Hales BJ
    Biochemistry; 1998 Jun; 37(26):9449-56. PubMed ID: 9649328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of C
    Sickerman NS; Tanifuji K; Lee CC; Ohki Y; Tatsumi K; Ribbe MW; Hu Y
    J Am Chem Soc; 2017 Jan; 139(2):603-606. PubMed ID: 28043123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogenase Cofactor Assembly: An Elemental Inventory.
    Sickerman NS; Ribbe MW; Hu Y
    Acc Chem Res; 2017 Nov; 50(11):2834-2841. PubMed ID: 29064664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of N
    Harris DF; Lukoyanov DA; Shaw S; Compton P; Tokmina-Lukaszewska M; Bothner B; Kelleher N; Dean DR; Hoffman BM; Seefeldt LC
    Biochemistry; 2018 Feb; 57(5):701-710. PubMed ID: 29283553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural characterization of the nitrogenase molybdenum-iron protein with the substrate acetylene trapped near the active site.
    Keable SM; Vertemara J; Zadvornyy OA; Eilers BJ; Danyal K; Rasmussen AJ; De Gioia L; Zampella G; Seefeldt LC; Peters JW
    J Inorg Biochem; 2018 Mar; 180():129-134. PubMed ID: 29275221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of Nitrogenase H
    Khadka N; Milton RD; Shaw S; Lukoyanov D; Dean DR; Minteer SD; Raugei S; Hoffman BM; Seefeldt LC
    J Am Chem Soc; 2017 Sep; 139(38):13518-13524. PubMed ID: 28851217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalysis-dependent selenium incorporation and migration in the nitrogenase active site iron-molybdenum cofactor.
    Spatzal T; Perez KA; Howard JB; Rees DC
    Elife; 2015 Dec; 4():e11620. PubMed ID: 26673079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleotide-assisted [Fe4S4] redox state interconversions of the Azotobacter vinelandii Fe protein and their relevance to nitrogenase catalysis.
    Jacobs D; Watt GD
    Biochemistry; 2013 Jul; 52(28):4791-9. PubMed ID: 23815521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic Fischer-Tropsch-Type Reactions.
    Hu Y; Lee CC; Grosch M; Solomon JB; Weigand W; Ribbe MW
    Chem Rev; 2023 May; 123(9):5755-5797. PubMed ID: 36542730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrocatalytic CO
    Hu B; Harris DF; Dean DR; Liu TL; Yang ZY; Seefeldt LC
    Bioelectrochemistry; 2018 Apr; 120():104-109. PubMed ID: 29223886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.