BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

688 related articles for article (PubMed ID: 30226055)

  • 21. Carbon nanotubes: a powerful bridge for conductivity and flexibility in electrochemical glucose sensors.
    Yuwen T; Shu D; Zou H; Yang X; Wang S; Zhang S; Liu Q; Wang X; Wang G; Zhang Y; Zang G
    J Nanobiotechnology; 2023 Sep; 21(1):320. PubMed ID: 37679841
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two faces of carbon nanotube: toxicities and pharmaceutical applications.
    Gulati N; Gupta H
    Crit Rev Ther Drug Carrier Syst; 2012; 29(1):65-88. PubMed ID: 22356722
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbon Nanotube-Based Chemical Sensors.
    Meyyappan M
    Small; 2016 Apr; 12(16):2118-29. PubMed ID: 26959284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advances and prospects on biomolecules functionalized carbon nanotubes.
    Cui D
    J Nanosci Nanotechnol; 2007; 7(4-5):1298-314. PubMed ID: 17450892
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanotechnology for implantable sensors: carbon nanotubes and graphene in medicine.
    Wujcik EK; Monty CN
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(3):233-49. PubMed ID: 23450525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A review of fabrication and applications of carbon nanotube film-based flexible electronics.
    Park S; Vosguerichian M; Bao Z
    Nanoscale; 2013 Mar; 5(5):1727-52. PubMed ID: 23381727
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Random CNT network and regioregular poly(3-hexylthiophen) FETs for pH sensing applications: a comparison.
    Münzer AM; Melzer K; Heimgreiter M; Scarpa G
    Biochim Biophys Acta; 2013 Sep; 1830(9):4353-8. PubMed ID: 23395843
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Continuous Meter-Scale Synthesis of Weavable Tunicate Cellulose/Carbon Nanotube Fibers for High-Performance Wearable Sensors.
    Cho SY; Yu H; Choi J; Kang H; Park S; Jang JS; Hong HJ; Kim ID; Lee SK; Jeong HS; Jung HT
    ACS Nano; 2019 Aug; 13(8):9332-9341. PubMed ID: 31369239
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon nanotubes grown on stainless steel to form plate and probe electrodes for chemical/biological sensing.
    Yun Y; Gollapudi R; Shanov V; Schulz MJ; Dong Z; Jazieh A; Heineman WR; Halsall HB; Wong DK; Bange A; Tu Y; Subramaniam S
    J Nanosci Nanotechnol; 2007 Mar; 7(3):891-7. PubMed ID: 17450851
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conductive Polymer-Coated Carbon Nanotubes To Construct Stretchable and Transparent Electrochemical Sensors.
    Jin ZH; Liu YL; Chen JJ; Cai SL; Xu JQ; Huang WH
    Anal Chem; 2017 Feb; 89(3):2032-2038. PubMed ID: 28029034
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational study of a nanobiosensor: a single-walled carbon nanotube functionalized with the coxsackie-adenovirus receptor.
    Johnson RR; Rego BJ; Johnson AT; Klein ML
    J Phys Chem B; 2009 Aug; 113(34):11589-93. PubMed ID: 19435308
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Incorporating a hybrid urease-carbon nanotubes sensitive nanofilm on capacitive field-effect sensors for urea detection.
    Siqueira JR; Molinnus D; Beging S; Schöning MJ
    Anal Chem; 2014 Jun; 86(11):5370-5. PubMed ID: 24814256
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrathin gold nanowire-functionalized carbon nanotubes for hybrid molecular sensing.
    Cui H; Hong C; Ying A; Yang X; Ren S
    ACS Nano; 2013 Sep; 7(9):7805-11. PubMed ID: 23987824
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon nanotubes-based label-free affinity sensors for environmental monitoring.
    Sarkar T; Gao Y; Mulchandani A
    Appl Biochem Biotechnol; 2013 Jul; 170(5):1011-25. PubMed ID: 23653139
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The new age of carbon nanotubes: an updated review of functionalized carbon nanotubes in electrochemical sensors.
    Gao C; Guo Z; Liu JH; Huang XJ
    Nanoscale; 2012 Mar; 4(6):1948-63. PubMed ID: 22337209
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a paper-based carbon nanotube sensing microfluidic device for biological detection.
    Yang SI; Lei KF; Tsai SW; Hsu HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():168-71. PubMed ID: 24109651
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanoelectronic Heterodyne Sensor: A New Electronic Sensing Paradigm.
    Kulkarni GS; Zang W; Zhong Z
    Acc Chem Res; 2016 Nov; 49(11):2578-2586. PubMed ID: 27668314
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Macroscopic Carbon Nanotube-based 3D Monoliths.
    Du R; Zhao Q; Zhang N; Zhang J
    Small; 2015 Jul; 11(27):3263-89. PubMed ID: 25740457
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication, densification, and replica molding of 3D carbon nanotube microstructures.
    Copic D; Park SJ; Tawfick S; De Volder M; Hart AJ
    J Vis Exp; 2012 Jul; (65):. PubMed ID: 22806089
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrical and Electrochemical Sensors Based on Carbon Nanotubes for the Monitoring of Chemicals in Water-A Review.
    Cho G; Azzouzi S; Zucchi G; Lebental B
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.