These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 30226387)

  • 1. Cell Type and Nuclear Size Dependence of the Nuclear Deformation of Cells on a Micropillar Array.
    Liu R; Liu Q; Pan Z; Liu X; Ding J
    Langmuir; 2019 Jun; 35(23):7469-7477. PubMed ID: 30226387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proliferation of Cells with Severe Nuclear Deformation on a Micropillar Array.
    Liu R; Yao X; Liu X; Ding J
    Langmuir; 2019 Jan; 35(1):284-299. PubMed ID: 30513205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonmonotonic Self-Deformation of Cell Nuclei on Topological Surfaces with Micropillar Array.
    Liu X; Liu R; Gu Y; Ding J
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18521-18530. PubMed ID: 28514142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosomal Repositioning and Gene Regulation of Cells on a Micropillar Array.
    Liu R; Ding J
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):35799-35812. PubMed ID: 32667177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical trapping of the nucleus on micropillared surfaces inhibits the proliferation of vascular smooth muscle cells but not cervical cancer HeLa cells.
    Nagayama K; Hamaji Y; Sato Y; Matsumoto T
    J Biomech; 2015 Jul; 48(10):1796-803. PubMed ID: 26054426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcellular cell geometry on micropillars regulates stem cell differentiation.
    Liu X; Liu R; Cao B; Ye K; Li S; Gu Y; Pan Z; Ding J
    Biomaterials; 2016 Dec; 111():27-39. PubMed ID: 27716524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of cell nucleus shapes via micropillar patterns.
    Pan Z; Yan C; Peng R; Zhao Y; He Y; Ding J
    Biomaterials; 2012 Feb; 33(6):1730-5. PubMed ID: 22133552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteoblast-like cell (MC3T3-E1) proliferation on bioerodible polymers: an approach towards the development of a bone-bioerodible polymer composite material.
    Elgendy HM; Norman ME; Keaton AR; Laurencin CT
    Biomaterials; 1993; 14(4):263-9. PubMed ID: 8386557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micropillar displacements by cell traction forces are mechanically correlated with nuclear dynamics.
    Li Q; Makhija E; Hameed FM; Shivashankar GV
    Biochem Biophys Res Commun; 2015 May; 461(2):372-7. PubMed ID: 25911321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered natural and synthetic polymer surfaces induce nuclear deformation in osteosarcoma cells.
    Antmen E; Ermis M; Demirci U; Hasirci V
    J Biomed Mater Res B Appl Biomater; 2019 Feb; 107(2):366-376. PubMed ID: 29663651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directing nuclear deformation on micropillared surfaces by substrate geometry and cytoskeleton organization.
    Badique F; Stamov DR; Davidson PM; Veuillet M; Reiter G; Freund JN; Franz CM; Anselme K
    Biomaterials; 2013 Apr; 34(12):2991-3001. PubMed ID: 23357373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic Assisted Nanoprecipitation of PLGA Nanoparticles for Curcumin Delivery to Leukemia Jurkat Cells.
    Leung MHM; Shen AQ
    Langmuir; 2018 Apr; 34(13):3961-3970. PubMed ID: 29544247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteoblastic phenotype expression of MC3T3-E1 cells cultured on polymer surfaces.
    Calvert JW; Chua WC; Gharibjanian NA; Dhar S; Evans GR
    Plast Reconstr Surg; 2005 Aug; 116(2):567-76. PubMed ID: 16079693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A digital microfluidic platform based on a near-infrared light-responsive shape-memory micropillar array.
    Ye WQ; Wei YY; Wang DN; Yang CG; Xu ZR
    Lab Chip; 2021 Mar; 21(6):1131-1138. PubMed ID: 33533387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Actomyosin, vimentin and LINC complex pull on osteosarcoma nuclei to deform on micropillar topography.
    Tusamda Wakhloo N; Anders S; Badique F; Eichhorn M; Brigaud I; Petithory T; Vassaux M; Milan JL; Freund JN; Rühe J; Davidson PM; Pieuchot L; Anselme K
    Biomaterials; 2020 Mar; 234():119746. PubMed ID: 31945617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired nanocarriers for an effective chemotherapy of hepatocellular carcinoma.
    Xu L; Wu S; Zhou X
    J Biomater Appl; 2018 Jul; 33(1):72-81. PubMed ID: 29699442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(L-lactide-co-glycolide) nanospheres conjugated with a nuclear localization signal for delivery of plasmid DNA.
    Jeon O; Lim HW; Lee M; Song SJ; Kim BS
    J Drug Target; 2007 Apr; 15(3):190-8. PubMed ID: 17454356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear Deformation in Response to Mechanical Confinement is Cell Type Dependent.
    Doolin MT; Ornstein TS; Stroka KM
    Cells; 2019 May; 8(5):. PubMed ID: 31072066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fidgetin-like 1 gene inhibited by basic fibroblast growth factor regulates the proliferation and differentiation of osteoblasts.
    Park SJ; Kim SJ; Rhee Y; Byun JH; Kim SH; Kim MH; Lee EJ; Lim SK
    J Bone Miner Res; 2007 Jun; 22(6):889-96. PubMed ID: 17352653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gas-foamed poly(lactide-co-glycolide) and poly(lactide-co-glycolide) with bioactive glass fibres demonstrate insufficient bone repair in lapine osteochondral defects.
    Salonius E; Muhonen V; Lehto K; Järvinen E; Pyhältö T; Hannula M; Aula AS; Uppstu P; Haaparanta AM; Rosling A; Kellomäki M; Kiviranta I
    J Tissue Eng Regen Med; 2019 Mar; 13(3):406-415. PubMed ID: 30644174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.