These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 30226470)

  • 1. Application of reduced sensor movement sequences as a precursor for search area partitioning and a selection of discrete EEV contour-ring fragments for active electrolocation.
    Wolf-Homeyer S; Engelmann J; Schneider A
    Bioinspir Biomim; 2018 Oct; 13(6):066008. PubMed ID: 30226470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrolocation of objects in fluids by means of active sensor movements based on discrete EEVs.
    Wolf-Homeyer S; Engelmann J; Schneider A
    Bioinspir Biomim; 2016 Aug; 11(5):055002. PubMed ID: 27530278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study of amplitude information-frequency characteristics for underwater active electrolocation system.
    Peng J
    Bioinspir Biomim; 2015 Nov; 10(6):066007. PubMed ID: 26531142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric fish measure distance in the dark.
    von der Emde G; Schwarz S; Gomez L; Budelli R; Grant K
    Nature; 1998 Oct; 395(6705):890-4. PubMed ID: 9804420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motion parallax for object localization in electric fields.
    Hunke K; Engelmann J; Meyer HG; Schneider A
    Bioinspir Biomim; 2021 Dec; 17(1):. PubMed ID: 34673547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-visual environmental imaging and object detection through active electrolocation in weakly electric fish.
    von der Emde G
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Jun; 192(6):601-12. PubMed ID: 16645886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distance, shape and more: recognition of object features during active electrolocation in a weakly electric fish.
    von der Emde G; Fetz S
    J Exp Biol; 2007 Sep; 210(Pt 17):3082-95. PubMed ID: 17704083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active electrolocation in Gnathonemus petersii: behaviour, sensory performance, and receptor systems.
    von der Emde G; Amey M; Engelmann J; Fetz S; Folde C; Hollmann M; Metzen M; Pusch R
    J Physiol Paris; 2008; 102(4-6):279-90. PubMed ID: 18992334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From static electric images to electric flow: towards dynamic perceptual cues in active electroreception.
    Hofmann V; Sanguinetti-Scheck JI; Gómez-Sena L; Engelmann J
    J Physiol Paris; 2013; 107(1-2):95-106. PubMed ID: 22781955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplitude information-frequency characteristics for multi-frequency excitation of underwater active electrolocation systems.
    Ren Q; Peng J; Chen H
    Bioinspir Biomim; 2019 Nov; 15(1):016004. PubMed ID: 31661679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mind the gap: the minimal detectable separation distance between two objects during active electrolocation.
    Fechler K; Holtkamp D; Neusel G; Sanguinetti-Scheck JI; Budelli R; von der Emde G
    J Fish Biol; 2012 Dec; 81(7):2255-76. PubMed ID: 23252738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrolocation based on tail-bending movements in weakly electric fish.
    Sim M; Kim D
    J Exp Biol; 2011 Jul; 214(Pt 14):2443-50. PubMed ID: 21697437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distance and shape: perception of the 3-dimensional world by weakly electric fish.
    von der Emde G
    J Physiol Paris; 2004; 98(1-3):67-80. PubMed ID: 15477023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Figure-ground separation during active electrolocation in the weakly electric fish, Gnathonemus petersii.
    Fechler K; von der Emde G
    J Physiol Paris; 2013; 107(1-2):72-83. PubMed ID: 22504389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistics of the electrosensory input in the freely swimming weakly electric fish Apteronotus leptorhynchus.
    Fotowat H; Harrison RR; Krahe R
    J Neurosci; 2013 Aug; 33(34):13758-72. PubMed ID: 23966697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Representation of object's shape by multiple electric images in electrolocation.
    Fujita K; Kashimori Y
    Biol Cybern; 2019 Jun; 113(3):239-255. PubMed ID: 30627851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active electrolocation in pulse gymnotids: sensory consequences of objects' mutual polarization.
    Aguilera PA; Pereira AC; Caputi AA
    J Exp Biol; 2012 May; 215(Pt 9):1533-41. PubMed ID: 22496290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrolocation-based underwater obstacle avoidance using wide-field integration methods.
    Dimble KD; Faddy JM; Humbert JS
    Bioinspir Biomim; 2014 Mar; 9(1):016012. PubMed ID: 24451219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive underwater object inspection based on artificial electric sense.
    Lebastard V; Boyer F; Lanneau S
    Bioinspir Biomim; 2016 Jul; 11(4):045003. PubMed ID: 27458187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active sensing in a mormyrid fish: electric images and peripheral modifications of the signal carrier give evidence of dual foveation.
    Pusch R; von der Emde G; Hollmann M; Bacelo J; Nöbel S; Grant K; Engelmann J
    J Exp Biol; 2008 Mar; 211(Pt 6):921-34. PubMed ID: 18310118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.