These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 30226513)

  • 1. Supramolecular recognition of a CWA simulant by metal-salen complexes: the first multi-topic approach.
    Puglisi R; Pappalardo A; Gulino A; Trusso Sfrazzetto G
    Chem Commun (Camb); 2018 Oct; 54(79):11156-11159. PubMed ID: 30226513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene oxide as sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent simulants.
    Sayago I; Matatagui D; Fernández MJ; Fontecha JL; Jurewicz I; Garriga R; Muñoz E
    Talanta; 2016 Feb; 148():393-400. PubMed ID: 26653465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supramolecular Sensing of Chemical Warfare Agents.
    Butera E; Zammataro A; Pappalardo A; Trusso Sfrazzetto G
    Chempluschem; 2021 Apr; 86(4):681-695. PubMed ID: 33881227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supramolecular Detection of a Nerve Agent Simulant by Fluorescent Zn-Salen Oligomer Receptors.
    Puglisi R; Mineo PG; Pappalardo A; Gulino A; Trusso Sfrazzetto G
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31181723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supramolecular Sensing of a Chemical Warfare Agents Simulant by Functionalized Carbon Nanoparticles.
    Tuccitto N; Spitaleri L; Li Destri G; Pappalardo A; Gulino A; Trusso Sfrazzetto G
    Molecules; 2020 Dec; 25(23):. PubMed ID: 33291853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic insights into the luminescent sensing of organophosphorus chemical warfare agents and simulants using trivalent lanthanide complexes.
    Dennison GH; Johnston MR
    Chemistry; 2015 Apr; 21(17):6328-38. PubMed ID: 25649522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensing Chemical Warfare Agent Simulants via Photonic Crystals of the
    Kittle JD; Fisher BP; Esparza AJ; Morey AM; Iacono ST
    ACS Omega; 2017 Nov; 2(11):8301-8307. PubMed ID: 30023581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Binding Affinities of Water-Soluble Calixarenes with the Organophosphorus Nerve Agent Soman (GD) and Commonly-Used Nerve Agent Simulants.
    Ede JA; Cragg PJ; Sambrook MR
    Molecules; 2018 Jan; 23(1):. PubMed ID: 29351252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into organophosphate chemical warfare agent simulant hydrolysis in metal-organic frameworks.
    Ploskonka AM; DeCoste JB
    J Hazard Mater; 2019 Aug; 375():191-197. PubMed ID: 31059988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secondary ionization of chemical warfare agent simulants: atmospheric pressure ion mobility time-of-flight mass spectrometry.
    Steiner WE; Clowers BH; Haigh PE; Hill HH
    Anal Chem; 2003 Nov; 75(22):6068-76. PubMed ID: 14615983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nerve Gas Simulant Sensing by a Uranyl-Salen Monolayer Covalently Anchored on Quartz Substrates.
    Trusso Sfrazzetto G; Millesi S; Pappalardo A; Tomaselli GA; Ballistreri FP; Toscano RM; Fragalà I; Gulino A
    Chemistry; 2017 Jan; 23(7):1576-1583. PubMed ID: 27859726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vapor Selectivity of a Natural Photonic Crystal to Binary and Tertiary Mixtures Containing Chemical Warfare Agent Simulants.
    Kittle J; Fisher B; Kunselman C; Morey A; Abel A
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31881779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of a chemical warfare agent simulant in various aerosol matrixes by ion mobility time-of-flight mass spectrometry.
    Steiner WE; Klopsch SJ; English WA; Clowers BH; Hill HH
    Anal Chem; 2005 Aug; 77(15):4792-9. PubMed ID: 16053290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acid is a potential interferent in fluorescent sensing of chemical warfare agent vapors.
    Fan S; Dennison GH; FitzGerald N; Burn PL; Gentle IR; Shaw PE
    Commun Chem; 2021 Mar; 4(1):45. PubMed ID: 36697578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New poly(N,N-dimethylaminoethyl methacrylate)/polyvinyl alcohol copolymer coated QCM sensor for interaction with CWA simulants.
    Zhang Z; Fan J; Yu J; Zheng S; Chen W; Li H; Wang Z; Zhang W
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):944-9. PubMed ID: 22257173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Malathion, DIMP, and Strawberry Furanone as CWA Simulants for Consideration in Field-Level Interior Building Remediation Exercises.
    Oudejans L; Wyrzykowska-Ceradini B; Morris E; Jackson S; Touati A; Sawyer J; Mikelonis A; Serre S
    J Chem Health Saf; 2023 Jun; 30():270-278. PubMed ID: 38269393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boosted ability of ZIF-8 for early-stage adsorption and degradation of chemical warfare agent simulants.
    Oh S; Lee S; Lee G; Oh M
    Nanoscale Adv; 2023 Nov; 5(23):6449-6457. PubMed ID: 38024321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Four-Channel Monitoring System with Surface Acoustic Wave Sensors for Detection of Chemical Warfare Agents.
    Kim J; Kim E; Kim J; Kim JH; Ha S; Song C; Jang WJ; Yun J
    J Nanosci Nanotechnol; 2020 Nov; 20(11):7151-7157. PubMed ID: 32604574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman Spectroscopic Detection for Simulants of Chemical Warfare Agents Using a Spatial Heterodyne Spectrometer.
    Hu G; Xiong W; Luo H; Shi H; Li Z; Shen J; Fang X; Xu B; Zhang J
    Appl Spectrosc; 2018 Jan; 72(1):151-158. PubMed ID: 28627233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using cheminformatics to find simulants for chemical warfare agents.
    Lavoie J; Srinivasan S; Nagarajan R
    J Hazard Mater; 2011 Oct; 194():85-91. PubMed ID: 21872989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.