These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 30226703)

  • 1. [A Research on Filed-of-View (FOV) Widening and Thermal-Phase-Drift (TPD) Compensating Technology Applied in a Polarized Interference Imaging Spectrometer (PIIS)].
    Zhai Y; Xiao D; Li B; Zhu RH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3720-5. PubMed ID: 30226703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influences of the thickness, misalignment, and dispersion of the Savart polariscope on the optical path difference and spectral resolution in the polarization interference imaging spectrometer.
    Zhang C; Zhao J; Sun Y
    Appl Opt; 2011 Jul; 50(20):3497-504. PubMed ID: 21743559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectrum reconstruction based on the constrained optimal linear inverse methods.
    Ren W; Zhang C; Mu T; Dai H
    Opt Lett; 2012 Jul; 37(13):2580-2. PubMed ID: 22743461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large field-of-view Fourier transform imaging spectrometer using dual-channel stitching.
    Liu C; Li J; Zhu R; Cui X
    Opt Express; 2016 Dec; 24(25):28473-28490. PubMed ID: 27958491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-compact Fourier transform imaging spectrometer using a focal plane birefringent interferometer.
    Xu Y; Li J; Bai C; Yuan H; Liu J
    Opt Lett; 2018 Sep; 43(17):4081-4084. PubMed ID: 30160721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Empirical mode decomposition based background removal and de-noising in polarization interference imaging spectrometer.
    Zhang C; Ren W; Mu T; Fu L; Jia C
    Opt Express; 2013 Feb; 21(3):2592-605. PubMed ID: 23481716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Birefringent Fourier-transform imaging spectrometer.
    Harvey A; Fletcher-Holmes D
    Opt Express; 2004 Nov; 12(22):5368-74. PubMed ID: 19484098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural network calibration of a snapshot birefringent Fourier transform spectrometer with periodic phase errors.
    Luo D; Kudenov MW
    Opt Express; 2016 May; 24(10):11266-81. PubMed ID: 27409947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wavelength measurement by Fourier analysis of interference fringes through a plane parallel plate.
    Lee C; Choi H; Kim J; Cha M; Jin J
    Appl Opt; 2017 Dec; 56(35):9638-9643. PubMed ID: 29240108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppressing the Multiplex Disadvantage in Photon-Noise Limited Interferometry Using Cross-Dispersed Spatial Heterodyne Spectrometry.
    Egan MJ; Colón AM; Angel SM; Sharma SK
    Appl Spectrosc; 2021 Feb; 75(2):208-215. PubMed ID: 32662290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance Assessment of a Plate Beam Splitter for Deep-Ultraviolet Raman Measurements with a Spatial Heterodyne Raman Spectrometer.
    Lamsal N; Angel SM
    Appl Spectrosc; 2017 Jun; 71(6):1263-1270. PubMed ID: 27876691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Image quality and spectral performance evaluations of a polarization imaging spectrometer based on a Savart polariscope.
    Ai J; Gao P; Chen Q; Zhang S
    Appl Opt; 2017 Jul; 56(21):5933-5938. PubMed ID: 29047914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging spectrum reconstruction of a spatial heterodyne imaging spectrometer.
    Ye S; Li Z; Zhang Y; Xiong W; Wang F; Wang X; Zhang W
    Appl Opt; 2022 Feb; 61(6):C13-C19. PubMed ID: 35200993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beam drift error and control technology for scanning beam interference lithography.
    Wang W; Song Y; Jiang S; Pan M; Bayanheshig
    Appl Opt; 2017 May; 56(14):4138-4145. PubMed ID: 29047546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Fourier transform spectrometer without a beam splitter for the vacuum ultraviolet range: From the optical design to the first UV spectrum.
    de Oliveira N; Joyeux D; Phalippou D; Rodier JC; Polack F; Vervloet M; Nahon L
    Rev Sci Instrum; 2009 Apr; 80(4):043101. PubMed ID: 19405645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MWIR thermal imaging spectrometer based on the acousto-optic tunable filter.
    Zhao H; Ji Z; Jia G; Zhang Y; Li Y; Wang D
    Appl Opt; 2017 Sep; 56(25):7269-7276. PubMed ID: 29047991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Analysis and Design of Interference Imaging System in Fourier Transform Imaging Spectrometer Based on Multi-Micro-Mirror].
    Lü JG; Liang JQ; Liang ZZ; Tian C; Qin YX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 May; 36(5):1554-9. PubMed ID: 30001062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of interference fringes based on three circularly polarized beams targeted for birefringence distribution measurements.
    Shimomura A; Fukuda T; Emoto A
    Appl Opt; 2018 Sep; 57(25):7318-7324. PubMed ID: 30182994
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 18.