These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 30227202)

  • 1. High-strength and self-recoverable silk fibroin cryogels with anisotropic swelling and mechanical properties.
    Yetiskin B; Okay O
    Int J Biol Macromol; 2019 Feb; 122():1279-1289. PubMed ID: 30227202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macroporous silk fibroin cryogels.
    Ak F; Oztoprak Z; Karakutuk I; Okay O
    Biomacromolecules; 2013 Mar; 14(3):719-27. PubMed ID: 23360211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silk fibroin aerogels: potential scaffolds for tissue engineering applications.
    Mallepally RR; Marin MA; Surampudi V; Subia B; Rao RR; Kundu SC; McHugh MA
    Biomed Mater; 2015 May; 10(3):035002. PubMed ID: 25953953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of crystalline domains on long-term stability and mechanical performance of anisotropic silk fibroin sponges.
    Aikman EL; Rao AP; Jia Y; Fussell EE; Trumbull KE; Sampath J; Stoppel WL
    J Biomed Mater Res A; 2024 Sep; 112(9):1451-1471. PubMed ID: 38469675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bio-inspired fabrication of fibroin cryogels from the muga silkworm Antheraea assamensis for liver tissue engineering.
    Kundu B; Kundu SC
    Biomed Mater; 2013 Oct; 8(5):055003. PubMed ID: 24002731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and mechanical performance study of silk/PVA cryogels: towards nucleus pulposus tissue engineering.
    Neo PY; Shi P; Goh JC; Toh SL
    Biomed Mater; 2014 Oct; 9(6):065002. PubMed ID: 25329452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collagen-I/silk-fibroin biocomposite exhibits microscalar confinement of cells and induces anisotropic morphology and migration of embedded fibroblasts.
    Konar S; Edwina P; Ramanujam V; Arunachalakasi A; Bajpai SK
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2368-2377. PubMed ID: 31984672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryogelation reactions and cryogels: principles and challenges.
    Okay O
    Turk J Chem; 2023; 47(5):910-926. PubMed ID: 38173748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of UV-irradiation on thermal and mechanical properties of chitosan and silk fibroin mixtures.
    Sionkowska A; Płanecka A; Lewandowska K; Michalska M
    J Photochem Photobiol B; 2014 Nov; 140():301-5. PubMed ID: 25218587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile fabrication of the porous three-dimensional regenerated silk fibroin scaffolds.
    Cao Z; Wen J; Yao J; Chen X; Ni Y; Shao Z
    Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3522-9. PubMed ID: 23706242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin.
    Kim UJ; Park J; Kim HJ; Wada M; Kaplan DL
    Biomaterials; 2005 May; 26(15):2775-85. PubMed ID: 15585282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, Structural and Micromechanical Properties of 3D Hyaluronic Acid-Based Cryogel Scaffolds.
    Oelschlaeger C; Bossler F; Willenbacher N
    Biomacromolecules; 2016 Feb; 17(2):580-9. PubMed ID: 26785355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications.
    Yan LP; Oliveira JM; Oliveira AL; Caridade SG; Mano JF; Reis RL
    Acta Biomater; 2012 Jan; 8(1):289-301. PubMed ID: 22019518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing.
    Asuncion MCT; Goh JC; Toh SL
    Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():646-656. PubMed ID: 27287164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Freeze-gelled silk fibroin protein scaffolds for potential applications in soft tissue engineering.
    Bhardwaj N; Chakraborty S; Kundu SC
    Int J Biol Macromol; 2011 Oct; 49(3):260-7. PubMed ID: 21557966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of gelatin/hyaluronic acid cryogels for adipose tissue engineering: in vitro and in vivo studies.
    Chang KH; Liao HT; Chen JP
    Acta Biomater; 2013 Nov; 9(11):9012-26. PubMed ID: 23851171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macroporous Silk Nanofiber Cryogels with Tunable Properties.
    Zhang X; Hang Y; Ding Z; Xiao L; Cheng W; Lu Q
    Biomacromolecules; 2022 May; 23(5):2160-2169. PubMed ID: 35443774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation and characterisation of a modifiable soft macro-porous hyaluronic acid cryogel platform.
    Henderson TM; Ladewig K; Haylock DN; McLean KM; O'Connor AJ
    J Biomater Sci Polym Ed; 2015; 26(13):881-97. PubMed ID: 26123677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silk fibroin porous scaffolds by N
    Maniglio D; Bonani W; Migliaresi C; Motta A
    J Biomater Sci Polym Ed; 2018 Apr; 29(5):491-506. PubMed ID: 29297760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized composition of nanocomposite scaffolds formed from silk fibroin and nano-TiO
    Johari N; Madaah Hosseini HR; Samadikuchaksaraei A
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():783-792. PubMed ID: 28629081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.