BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 3022745)

  • 1. Effects of the affinity ligands 14-beta-chloroacetylnaltrexone and 14-beta-bromoacetamidomorphine on [3H]-dihydromorphine binding sites in rat brain.
    Reichman M; Dirksen R; Abood LG; Gala D
    Biochem Pharmacol; 1986 Nov; 35(22):3995-8. PubMed ID: 3022745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 14 beta-(Bromoacetamido)morphine irreversibly labels mu opioid receptors in rat brain membranes.
    Bidlack JM; Frey DK; Seyed-Mozaffari A; Archer S
    Biochemistry; 1989 May; 28(10):4333-9. PubMed ID: 2548575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical characterization of high-affinity 3H-opioid binding. Further evidence for Mu1 sites.
    Nishimura SL; Recht LD; Pasternak GW
    Mol Pharmacol; 1984 Jan; 25(1):29-37. PubMed ID: 6323950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3H-dihydromorphine binding sites in subcellular fractions of rat striatum.
    Antkiewicz-Michaluk L; Vetulani J; Havemann U; Kuschinsky K
    Pol J Pharmacol Pharm; 1982; 34(1-3):73-8. PubMed ID: 6300816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opioid receptor binding characteristics of the non-equilibrium mu antagonist, beta-funaltrexamine (beta-FNA).
    Ward SJ; Fries DS; Larson DL; Portoghese PS; Takemori AE
    Eur J Pharmacol; 1985 Jan; 107(3):323-30. PubMed ID: 2984010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of beta-funaltrexamine on radiolabeled opioid binding.
    Recht LD; Pasternak GW
    Eur J Pharmacol; 1987 Aug; 140(2):209-14. PubMed ID: 2822439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opioid-specific recognition sites of the mu- and the delta-type in rat striatum after lesions with kainic acid.
    Antkiewicz-Michaluk L; Havemann U; Vetulani J; Wellstein A; Kuschinsky K
    Life Sci; 1984 Jul; 35(4):347-55. PubMed ID: 6087059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding characteristics of mu and kappa agonists in rat brain subcellular fractions.
    Monferini E; Adler MW; Simon EJ
    Life Sci; 1982 Sep 20-27; 31(12-13):1295-8. PubMed ID: 6128655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation and visualisation of [3H]dermorphin binding to mu opioid receptors in the rat brain. Combined high selectivity and affinity in a natural peptide agonist for the morphine (mu) receptor.
    Amiche M; Sagan S; Mor A; Pelaprat D; Rostene W; Delfour A; Nicolas P
    Eur J Biochem; 1990 May; 189(3):625-35. PubMed ID: 2161761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereospecific accumulation of dihydromorphine and naltrexone by corpus striatal slices of morphine-dependent mice.
    Oishi R; Takemori AE
    Neuropharmacology; 1982 Jan; 21(1):57-61. PubMed ID: 6278352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogeneity of opioid receptor binding in brain slices.
    Barchfeld-Rothschild CC; Medzihradsky F
    J Neurosci Res; 1987; 18(2):358-65. PubMed ID: 2891857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstitution of high-affinity opioid agonist binding in brain membranes.
    Remmers AE; Medzihradsky F
    Proc Natl Acad Sci U S A; 1991 Mar; 88(6):2171-5. PubMed ID: 1848695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of opiate receptors in mouse brain: arcuate nuclear lesion induces receptor up-regulation and supersensitivity to opiates.
    Simantov R; Amir S
    Brain Res; 1983 Feb; 262(1):168-71. PubMed ID: 6299472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphine tolerance is associated with elevated levels of an uncharacterized endorphin (peak B) in mouse brain with no change in 3H-dihydromorphine binding.
    Lipman JJ; Miller BE; Karkara S; Winfield RC; North WC; Byrne WL
    Life Sci; 1983; 33 Suppl 1():373-6. PubMed ID: 6319893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Irreversible blockage of opioid receptor types by ester homologues of beta-funaltrexamine.
    Schoenecker JW; Takemori AE; Portoghese PS
    J Med Chem; 1986 Oct; 29(10):1868-71. PubMed ID: 3020246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential regulation of mu-opiate receptors in heroin- and morphine-dependent rats.
    Bolger GT; Skolnick P; Rice KC; Weissman BA
    FEBS Lett; 1988 Jul; 234(1):22-6. PubMed ID: 2839362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations in dihydromorphine binding in cerebral hemispheres of aged male rats.
    Messing RB; Vasquez BJ; Samaniego B; Jensen RA; Martinez JL; McGaugh JL
    J Neurochem; 1981 Feb; 36(2):784-7. PubMed ID: 6257860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Affinity of beta-carbolines on rat brain benzodiazepine and opiate binding sites.
    Airaksinen MM; Mikkonen E
    Med Biol; 1980 Dec; 58(6):341-4. PubMed ID: 6112290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The binding of kappa- and sigma-opiates in rat brain.
    Wolozin BL; Nishimura S; Pasternak GW
    J Neurosci; 1982 Jun; 2(6):708-13. PubMed ID: 6283040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solubilization and preliminary characterization of mu and kappa opiate receptor subtypes from rat brain.
    Chow T; Zukin RS
    Mol Pharmacol; 1983 Sep; 24(2):203-12. PubMed ID: 6310362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.